To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1385

Relationship: 1385

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Agonism, Androgen receptor leads to Reduction, Vitellogenin synthesis in liver

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Androgen receptor agonism leading to reproductive dysfunction (in repeat-spawning fish) non-adjacent High Low Evgeniia Kazymova (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
fathead minnow Pimephales promelas High NCBI
Danio rerio Danio rerio Moderate NCBI
medaka Oryzias latipes Moderate NCBI
Fundulus heteroclitus Fundulus heteroclitus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Female High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Adult, reproductively mature High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

At present, a direct structural/functional linkage between androgen receptor agonism and reduced plasma vitellogenin concentrations is not known. Consequently, the relationship is supported primarily via association/correlation.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

Updated 2017-03-17.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Synthesis of the steroidogenic enzymes that catalyze the formation of testosterone from cholesterol as a precursor as well as 17ß-estradiol (E2) from testosterone is stimulated by gonadotropins whose synthesis and secretion are in turn regulated by gonadotropin releasing hormone (GnRH) released from the hypothalamus (Payne and Hales 2004; Norris 2007; Miller 1988). Strong AR agonists are thought to exert negative feedback along the hypothalamic-pituitary-gonadal axis, leading to decreased stimulation of the steroidogenic pathway and subsequent declines in E2 production. E2 is known to be a major regulator of hepatic vitellogenin production (Tyler et al. 1996; Tyler and Sumpter 1996; Arukwe and GoksØyr 2003).

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

None noted.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

This KER is potentially applicable to reproductively mature, adult, oviparous vertebrates.

  • Androgen receptor orthologs are primarily limited to vertebrates (Baker 1997; Thornton 2001; Eick and Thornton 2011; Markov and Laudet 2011). 
  • Oviparous vertebrates synthesize yolk precursor proteins that are transported in the circulation for uptake by developing oocytes. Many invertebrates also synthesize vitellogenins that are taken up into developing oocytes via active transport mechanisms. However, invertebrate vitellogenins are transported in hemolymph or via other transport mechanisms rather than plasma.

References

List of the literature that was cited for this KER description. More help
  • Ankley GT, Jensen KM, Kahl MD, Durhan EJ, Makynen EA, Cavallin JE, Martinović D, Wehmas LC, Mueller ND, Villeneuve DL. Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model. Aquat Toxicol. 2010 Sep 1;99(3):389-96. doi: 10.1016/j.aquatox.2010.05.020.
  • Arukwe A, Goksøyr A. 2003. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comparative Hepatology 2(4): 1-21.
  • Baker ME. 1997. Steroid receptor phylogeny and vertebrate origins. Molecular and cellular endocrinology 135(2): 101-107.
  • Eick GN, Thornton JW. 2011. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Molecular and cellular endocrinology 334(1-2): 31-38.
  • Ekman DR, Villeneuve DL, Teng Q, Ralston-Hooper KJ, Martinović-Weigelt D, Kahl MD, Jensen KM, Durhan EJ, Makynen EA, Ankley GT, Collette TW. Use of gene expression, biochemical and metabolite profiles to enhance exposure and effects assessment of the model androgen 17β-trenbolone in fish. Environ Toxicol Chem. 2011 Feb;30(2):319-29. doi: 10.1002/etc.406.
  • Jensen KM, Makynen EA, Kahl MD, Ankley GT. Effects of the feedlot contaminant 17alpha-trenbolone on reproductive endocrinology of the fathead minnow. Environ Sci Technol. 2006 May 1;40(9):3112-7.
  • Jolly C, Katsiadaki I, Le Belle N, Mayer I, Dufour S. 2006. Development of a stickleback kidney cell culture assay for the screening of androgenic and anti-androgenic endocrine disrupters. Aquatic toxicology 79(2): 158-166.
  • LaLone CA, Villeneuve DL, Cavallin JE, Kahl MD, Durhan EJ, Makynen EA, Jensen KM, Stevens KE, Severson MN, Blanksma CA, Flynn KM, Hartig PC, Woodard JS, Berninger JP, Norberg-King TJ, Johnson RD, Ankley GT. Cross-species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone. Environ Toxicol Chem. 2013 Nov;32(11):2528-41. doi: 10.1002/etc.2330.
  • Li Z, Kroll KJ, Jensen KM, Villeneuve DL, Ankley GT, Brian JV, Sepúlveda MS, Orlando EF, Lazorchak JM, Kostich M, Armstrong B, Denslow ND, Watanabe KH. A computational model of the hypothalamic: pituitary: gonadal axis in female fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol and 17β-trenbolone. BMC Syst Biol. 2011 May 5;5:63. doi: 10.1186/1752-0509-5-63.
  • Markov GV, Laudet V. 2011. Origin and evolution of the ligand-binding ability of nuclear receptors. Molecular and cellular endocrinology 334(1-2): 21-30.
  • Miller WL. 1988. Molecular biology of steroid hormone synthesis. Endocrine reviews 9(3): 295-318.
  • Norris DO. 2007. Vertebrate Endocrinology. Fourth ed. New York: Academic Press.
  • Payne AH, Hales DB. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine reviews 25(6): 947-970.
  • Rutherford R, Lister A, Hewitt LM, MacLatchy D. Effects of model aromatizable (17α-methyltestosterone) and non-aromatizable (5α-dihydrotestosterone) androgens on the adult mummichog (Fundulus heteroclitus) in a short-term reproductive endocrine bioassay. Comp Biochem Physiol C Toxicol Pharmacol. 2015 Apr;170:8-18. doi: 10.1016/j.cbpc.2015.01.004.
  • Seki M, Fujishima S, Nozaka T, Maeda M, Kobayashi K. Comparison of response to 17 beta-estradiol and 17 beta-trenbolone among three small fish species. Environ Toxicol Chem. 2006 Oct;25(10):2742-52.
  • Sharpe RL, MacLatchy DL, Courtenay SC, Van Der Kraak GJ. Effects of a model androgen (methyl testosterone) and a model anti-androgen (cyproterone acetate) on reproductive endocrine endpoints in a short-term adult mummichog (Fundulus heteroclitus) bioassay. Aquat Toxicol. 2004 Apr 28;67(3):203-15.
  • Thornton JW. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences of the United States of America 98(10): 5671-5676.
  • Tyler C, Sumpter J. 1996. Oocyte growth and development in teleosts. Reviews in Fish Biology and Fisheries 6: 287-318.
  • Tyler C, van der Eerden B, Jobling S, Panter G, Sumpter J. 1996. Measurement of vitellogenin, a biomarker for exposure to oestrogenic chemicals, in a wide variety of cyprinid fish. Journal of Comparative Physiology and Biology 166: 418-426.
  • Villeneuve DL, Jensen KM, Cavallin JE, Durhan EJ, Garcia-Reyero N, Kahl MD, Leino RL, Makynen EA, Wehmas LC, Perkins EJ, Ankley GT. Effects of the antimicrobial contaminant triclocarban, and co-exposure with the androgen 17β-trenbolone, on reproductive function and ovarian transcriptome of the fathead minnow (Pimephales promelas). Environ Toxicol Chem. 2017 Jan;36(1):231-242. doi: 10.1002/etc.3531.
  •  
  •