To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1634

Relationship: 1634

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Binding, topoisomerase II leads to DSB

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help
DSB

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Inhibitor binding to topoisomerase II leading to infant leukaemia adjacent High Not Specified Andrea Terron (send email) Open for comment. Do not cite EAGMST Approved

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Mixed Not Specified

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Embryo High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Certain TopoII poisons stabilize the intermediate cleavage complex and prevent the religation with appropriate DNA strands. Covalently DNA end-bound TopoII protein is digested and a hanging end is created. The same process happens in the translocation partner gene. Hanging ends of both genes are processed and subsequently joined by non-homologous end joining (Cowell and Austin 2012). Indeed, compounds that increase the rate of DNA cleavage and decrease the rate of DNA religation by topo II enzyme are often referred to as Topo II "poisons" (Nitiss 2009).Topoisomerase poisons stabilize the normally transient topoisomerase-induced DSBs and are potent and widely used anticancer drugs (Cowell and Austin 2012). They interfer with the religation step in the topoisomerase II reaction cycle, leading to the accumulation of DNA DSBs. The inhibition of the religation step will result in the formation of an unusual type of DSB called a cleavage complex, in which the topoisomerase protein remains covalently coupled to the DNA (Cowell and Austin 2012).

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

All cells have two major forms of topoisomerases; Type I, which make single-stranded cuts in DNA, and Type II enzymes, which cut and pass double-stranded DNA (Nitiss et al 2012). Evidence supporting the causal relationship between etoposide-induced TopoII inhibition, DNA DSB and the MLL rearrangement leading to the fusion gene is strong regarding treatment-related acute leukaemia (Cowell and Austin 2012; Pendleton et al 2014). 

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The KER as such is biologically plausible and strong . Type II topoisomerases are ubiquitous enzymes which are essential for a number of fundamental DNA processes. As they generate DNA strand breaks, they can potentially fragment the genome. Indeed, while these enzymes are essential for the survival of proliferating cells they can also have significant genotoxic effects by means of accumulation of DNA strand breaks.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

DNA topoisomerases are ubiquitous enzymes, which control the integrity of double-stranded DNA. They are thus key enzymes at all levels of living organisms. The available evidence suggest that important differences in sensitivity to topoisomerase inhibition  might exist among different cell types, depending on the amount of proliferative burden, of the TopoII enzymes and on physiological repair processes. Mesodermal precursor or hematopoietic stem and progenitor cells (HSPCs) are rapidly dividing cells with a high content of TopoII and for these reasons they can be a sensitive target during a critical developmental window (Hernandez and Menendez 2016).  In addition, evidence from micronuclei assay studies conducted in untreated and chemical-treated foetuses and newborns show that both the baseline and chemically induced micronuclei frequencies are higher in the foetuses and infants than in adults (Udroiu et al 2016). This is possibly indicating a greater sensitivity to genotoxic insult during development which can be due to the higher proliferation rate and lower ability of DNA repair of the hematopoietic stem cells. However, the role that the different microenvironments (foetal liver, infant bone marrow and adult bone marrow) during ontogenesis can exert on cell sensitivity cannot be ruled out (Udroiu et al. 2016). The existence of relevant interspecies differences is unknown, but it cannot be ruled out presently.

References

List of the literature that was cited for this KER description. More help

Cowell IG, and Austin CA. 2012. mechanism of generation of Therapy related leukaemia in response to anti-topoisomerase II agents. Int.J.Environ.Res>Public Health. 9, 20175-2091.

Hernandez Jerez AF, Menendez P. Linking pesticide exposure with pediatric leukemia: potential underlying mechanisms. Int J Mol Sci 2016; 17: 461.

Li Z, Sun B, Clewell RA, Adeleye Y, Andersen ME, Zhang Q. Dose-response modeling of etoposide-induced DNA damage response. Toxicological Sciences 2014 Feb;137(2):371-84. doi: 10.1093/toxsci/kft259.

Moneypenny CG, Shao J, Song Y, Gallagher EP. MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis. 2006; 27(4):874–81. Epub 2005/12/27. doi: 10.1093/carcin/bgi322

Nitiss JL (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nat.Rev.Cancer 9 338-350.

Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. 2012. Topoisomerse Assays. Current Protocol Pharmacol. chapter 3: Unit 3.3.

Pendleton M, Lindsey RH Jr, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci. 2014 Mar;1310:98-110. doi: 10.1111/nyas.12358.

Udroiu I., Sgura A. Genotoxicity sensitivity of the developing hematopoietic system. 2012. Mutation Research 2012; 767: 1-7.