To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1743

Relationship: 1743

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Decrease, Cuticular chitin content leads to Increase, Premature molting

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
S-adenosylmethionine depletion leading to population decline (2) adjacent Allie Always (send email) Under development: Not open for comment. Do not cite
S-adenosylmethionine depletion leading to population decline (1) adjacent Agnes Aggy (send email) Under development: Not open for comment. Do not cite
Chitin synthase 1 inhibition leading to mortality adjacent Moderate Low Brendan Ferreri-Hanberry (send email) Open for citation & comment WPHA/WNT Endorsed
Sulfonylureareceptor binding leading to mortality adjacent Moderate Moderate Arthur Author (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
crustaceans Daphnia magna Moderate NCBI
insects insects Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific Moderate

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Larvae High
Juvenile High
Adult Moderate

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

As the arthropod cuticle is a central part in the molting process, its proper composition is indispensable for a proper molt. The ecdysis motor program, the behavioral part of ecdysis, constitutes a distinct motor pattern to split and shed the old cuticle (Ayali 2009). As the cuticle supports muscular function (Vincent and Wegst 2004), it needs to possess a certain integrity in order to successfully molt. The integrity of the cuticle is also important after ecdysis as  arthropods, such as insects and crustaceans, expand the new cuticle by swallowing air or water in order to build up pressure to split the old and expand the new exoskeleton and provide stability to the soft new cuticle (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985). The arthropod cuticle mostly consists of chitin embedded in and crosslinked with a matrix of proteins (Muthukrishnan et al. 2012). If the chitin content is too low, the cuticle may not possess enough integrity to support muscular function or withstand the beforementioned stresses of ecdysis, which leads to the organism being stuck in the old cuticle or the rupture of the new cuticle.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The ecdysis motor program, the behavioral part of ecdysis, constitutes a distinct motor pattern to split and shed the old cuticle (Ayali 2009). As the cuticle supports muscular function (Vincent and Wegst 2004), it needs to possess a certain integrity in order to successfully molt. The integrity of the cuticle is also important after ecdysis as  arthropods, such as insects and crustaceans, expand the new cuticle by swallowing air or water in order to build up pressure to expand the new exoskeleton and provide stability to the soft new cuticle (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985). The arthropod cuticle mostly consists of chitin embedded in and crosslinked with a matrix of proteins (Muthukrishnan et al. 2012). Given the well biological understanding of the processes, the biological plausibility can be regarded as high.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

The absence of studies (quantitatively) assessing premature molting constitutes a major data gap. A further data gap is the absence of studies which assess both, the decrease in cuticular chitin content and the increase in premature molting.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

Due to the lack of studies linking the decrease in cuticular chitin content with the increase in premature molting, it is not possible to describe the nature of the response-response relationship.

Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help

Due to the nature of the process, premature molting onsets at the time of ecdysis after the decrease in cuticular chitin content.

Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Taxonomic: In all likelihood, this KER is applicable to the whole phylum of arthropods as they all depend on the synthesis of chitin and molting in order to develop.

Life stage: This KER is applicable for organisms synthesizing chitin and molting in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.

Sex: This KER is applicable to all sexes.

Chemical: Occurrence of a decrease in cticular chitin content as well as premature molting was observed after treatment with the pyrimidine nucleosides polyoxin D, polyoxin B and nikkomycin Z (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986; Tellam et al. 2000; Arakawa et al. 2008; Zhuo et al. 2014). However, studies causally linking both endpoints are lacking.

References

List of the literature that was cited for this KER description. More help

Arakane, Y.; Muthukrishnan, S.; Kramer, K. J.; Specht, C. A.; Tomoyasu, Y.; Lorenzen, M. D.; Kanost, M.; Beeman, R. W. The Tribolium Chitin Synthase Genes TcCHS1 and TcCHS2 Are Specialized for Synthesis of Epidermal Cuticle and Midgut Peritrophic Matrix. Insect Mol. Biol. 2005, 14 (5), 453–463. https://doi.org/10.1111/j.1365-2583.2005.00576.x.

Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of Bombyx mori (Lepidoptera: Bombycidae), Mamestra brassicae, Mythimna separata, and Spodoptera litura (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173–181. doi:10.1303/aez.2008.173.

Ayali A. 2009. The role of the arthropod stomatogastric nervous system in moulting behaviour and ecdysis. J Exp Biol. 212(4):453–459. doi:10.1242/jeb.023879.

Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253–259. doi:10.7164/antibiotics.37.253.

Clarke KU. 1957. On the Increase in Linear Size During Growth in Locusta Migratoria L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1–3):35–39. doi:10.1111/j.1365-3032.1957.tb00361.x.

Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022-0981(78)90074-6.

deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab Callinectes Sapidus Rathbun. J Crustac Biol. 5(2):207–215. doi:10.2307/1547867.

Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193–197. doi:10.1016/0742-8413(86)90073-3.

Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in Pieris brassicae (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87–94. doi:10.1016/0048-3575(79)90098-1.

Lee RM. 1961. The variation of blood volume with age in the desert locust (Schistocerca gregaria Forsk.). J Insect Physiol. 6(1):36–51. doi:10.1016/0022-1910(61)90090-7.

Li, T.; Chen, J.; Fan, X.; Chen, W.; Zhang, W. MicroRNA and DsRNA Targeting Chitin Synthase A Reveal a Great Potential for Pest Management of the Hemipteran Insect Nilaparvata Lugens. Pest Manag. Sci. 2017, 73 (7), 1529–1537. https://doi.org/10.1002/ps.4492.

Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. 2012. Chitin Metabolism in Insects. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-12-384747-8.10007-8.

Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025–6043. doi:10.1046/j.1432-1327.2000.01679.x.

Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly Lucilia cuprina. Aust J Biol Sci. 35(5):491–504. doi:10.1071/BI9820491.

Vincent JFV, Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 33(3):187–199. doi:10.1016/j.asd.2004.05.006.

Zhang, X.; Zhang, J.; Zhu, K. Y. Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles Gambiae). Insect Mol. Biol. 2010, 19 (5), 683–693. https://doi.org/10.1111/j.1365-2583.2010.01029.x.

Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of Bombyx mori. Mol Biol Rep. 41(7):4177–4186. doi:10.1007/s11033-014-3288-1.