To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:2376

Relationship: 2376

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Decreased, Triiodothyronine (T3) leads to Decreased, Eye size

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Thyroperoxidase inhibition leading to altered visual function via decreased eye size adjacent Evgeniia Kazymova (send email) Under development: Not open for comment. Do not cite

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
zebrafish Danio rerio NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

It is known that thyroid hormones (THs) regulate eye development in vertebrates (reviewed by (Darras et al., 2015). Therefore, decreased T3 levels in serum during eye development are likely to lead to changes in eye development, including eye diameter/size.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3) are products of the thyroid gland in all vertebrates. Their role in early development and metamorphosis is well established in mammals and amphibians, respectively, and recently several studies in fish have highlighted the importance of THs during metamorphosis including eyes (Power et al., 2001), Baumann et al., 2019, Darras et al., 2015, Bohnsack & Kahana, 2013)

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

KER valid for all vertebrate taxa.

Mostly applicable to young stage of life/ development period

No evidence of sex specificity

 

References

List of the literature that was cited for this KER description. More help

Baumann, L., Ros, A., Rehberger, K., Neuhauss, S. C. F., & Segner, H. (2016). Thyroid disruption in zebrafish (Danio rerio) larvae: Different molecular response patterns lead to impaired eye development and visual functions. Aquatic Toxicology, 172, 44–55. https://doi.org/10.1016/j.aquatox.2015.12.015

Baumann, L., Segner, H., Ros, A., Knapen, D., & Vergauwen, L. (2019). Thyroid Hormone Disruptors Interfere with Molecular Pathways of Eye Development and Function in Zebrafish. International Journal of Molecular Sciences, 20(7), 1543. https://doi.org/10.3390/ijms20071543

Bohnsack, B. L., & Kahana, A. (2013). Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Developmental Biology, 373(2), 300–309. https://doi.org/10.1016/j.ydbio.2012.11.005

Darras, V. M., Houbrechts, A. M., & Van Herck, S. L. J. (2015). Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849(2), 130–141. https://doi.org/10.1016/j.bbagrm.2014.05.004

Houbrechts, A. M., Delarue, J., Gabriëls, I. J., Sourbron, J., & Darras, V. M. (2016). Permanent deiodinase type 2 Deficiency strongly perturbs zebrafish development, growth, and fertility. Endocrinology, 157(9), 3668–3681. https://doi.org/10.1210/en.2016-1077

Power, D. M., Llewellyn, L., Faustino, M., Nowell, M. A., Björnsson, B. T., Einarsdottir, I. E., Canario, A. V. M., & Sweeney, G. E. (2001). Thyroid hormones in growth and development of fish. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 130(4), 447–459. https://doi.org/10.1016/S1532-0456(01)00271-X

Reider, M., & Connaughton, V. P. (2014). Effects of low-dose embryonic thyroid disruption and rearing temperature on the development of the eye and retina in zebrafish. Birth Defects Research. Part B, Developmental and Reproductive Toxicology, 101(5), 347–354. https://doi.org/10.1002/bdrb.21118