To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:24

Relationship: 24


The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Alkylation, DNA leads to N/A, Inadequate DNA repair

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations adjacent High Moderate Evgeniia Kazymova (send email) Open for citation & comment TFHA/WNT Endorsed
Alkylation of DNA leading to cancer 1 adjacent High Moderate Arthur Author (send email) Open for adoption
Alkylation of DNA leading to reduced sperm count adjacent Brendan Ferreri-Hanberry (send email) Under development: Not open for comment. Do not cite

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help
Term Scientific Term Evidence Link
Syrian golden hamster Mesocricetus auratus Moderate NCBI
mouse Mus musculus Moderate NCBI

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

Alkylated DNA may be tolerated and/or repaired error-free by a variety of DNA repair pathways. However, at high doses, it is established that the primary DNA repair pathway (O6-Alkylguanine-DNA alkyltransferase: AGT) responsible for removing alkylated DNA becomes saturated. This may lead to several potential adduct fates: (i) error-free repair of the DNA adduct using alternative DNA repair mechanisms; (ii) no repair (DNA damage is retained); or (iii) instability in the DNA duplex leading to DNA strand breaks and possibly activation of DNA damage signaling. For repair of alkyl adducts it is well established that the O6-alkylguanine-DNA alkyltransferase pathway becomes saturated at high doses leading to insufficient repair at high doses.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help
Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

General details: The weight of evidence for this KER is strong. It is widely accepted that damaged DNA is subject to repair, and that in the absence of DNA repair, mutations will ensue. Specifically, AGT (Damage Reversal DNA repair: pathway #1 in KE155), also known as O6-methylguanine-DNA methyltransferase (MGMT), reverses alkylation damage by directly transferring alkyl groups from the O6 position of guanine to a cysteine residue on the AGT (or MGMT) molecule, restoring the DNA in a single step. However, transfer of the alky group to AGT results in concomitant inactivation of AGT (Pegg 2011). The mammalian protein is also active on O6-ethylguanine and can remove only one ethyl group from DNA, following which the protein is degraded. Thus, high levels of alkylation damage overwhelm the cellular AGT capacity to remove lesions. In mammalian cells, O4-ethylthymine and O2-ethylthymine are poor substrates for AGT (Fang et al. 2010) and no other DNA repair pathway has been identified that is able to efficiently repair these lesions; consequently, these lesions are extremely persistent in cells. Reviews on this topic have been published (Kaina et al. 2007; Pegg 2011). In the absence of the AGT/MGMT pathway, other DNA repair pathways may be invoked, but the relative efficiency of these pathways is not well understood (further details described below).

The role of nucleotide excision repair (NER; excision repair pathways: #2 in KE155) in alkylation damage repair in mammalian cells remains unclear. Earlier studies using human cell lines suggested that both AGT and NER may be involved in the repair of O6-ethylguanine (Bronstein et al. 1991; Bronstein et al. 1992). Very recently, an alkyltransferase like protein (ATL1) that has homology to AGT has been identified in a range of prokaryotes and lower eukaryotes. This protein has no alkyltransferase activity but can couple O6-alkylguanine damage to NER (Latypov et al. 2012). ATL1 proteins have not yet been identified in mammals.

Some alkyl adducts, such as N7-ethylguanine and N3-ethyladenine, are inherently unstable and may depurinate (i.e., hydrolytic cleavage of the glycosidic bond, which releases adenine or guanine). The resultant abasic sites are normally repaired through error-free pathways although they may occasionally be transformed to DNA strand breaks. In mammals, N-methylpurine DNA glycosylases, such as alkyladenine DNA glycosylase (AAG), have a wide range of substrates including N7-alkylguanine and N3-alkyladenine derivatives (Wyatt et al. 1999). However, there are no specific reports in the literature that the ethylated derivatives are AAG substrates. Glycosylases such as AAG yield abasic sites that are processed as described above. An alternative repair mechanism for repairing minor lesions such as N3-ethylcytosine and N1-ethyladenine is through oxidative dealkylation catalyzed by AlkB and mammalian homologs (Drabløs et al. 2004). This pathway is an error-free damage reversal pathway that releases the oxidized ethyl group as acetaldehyde (Duncan et al. 2002).

A final mechanism through which DNA repair pathways may influence the fate of alkylation damage is through futile cycling of the mismatch repair (MMR; excision repair pathways: #2 in KE155) system at an O6-alkyl G:T mispair. In this scenario, unrepaired O6-alkylguanine is able to mispair with T, and the mispair is recognized by MMR enzymes resulting in the removal of the newly incorporated thymine from the nascent strand opposite the O6-alkyguanine adduct. During DNA repair synthesis, O6-alkylguanine preferentially pairs once again with thymine, reinitiating the repair/synthesis cycle. This iteration of excision and synthesis may produce strand breaks and activate damage signaling pathways (York and Modrich 2006).

If the pathways described above become saturated or do not operate properly, the alkylated DNA will not be repaired and will provide a template for replication of this damaged DNA. This is widely understood and accepted. Many studies have demonstrated that the introduction of plasmids or vectors with alkylated DNA (i.e., unrepaired lesions) into prokaryotic and eukaryotic cells, followed by replication, results in the formation of mutations at the alkylated sites, and that the probability of a mutation occurring at the alkylated site is modified by specific DNA repair genes/pathways (reviewed in Basu and Essigmann 1990; Shrivastav et al. 2010).

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

DNA repair is not generally measured directly; thus, insufficient repair is inferred from the retention of adducts or the induction of increases in mutation frequencies post-exposure. In addition, various sizes of alkylation groups (e.g., methyl, ethyl, propyl) can be involved. Although it appears that the larger alkyl adducts tend to be more mutagenic (Beranek, 1990), this is not completely established and there are insufficient data to establish that this is true for germ cells. However, in general, this KER is biologically plausible, broadly accepted for alkyl adducts and has few uncertainties. The direct measurement of insufficient repair can be considered a data gap.

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

DNA adducts can occur in any cell type. While there are differences across taxa, all species have some DNA repair systems in place and it is common to extrapolate conclusions across eukaryotic species.


List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Basu, A.K. and J.M. Essigmann (1990), "Site-specific alkylated oligodeoxynucleotides: Probes for mutagenesis, DNA repair and the structure effects of DNA damage", Mutation Research, 233: 189-201.

Beranek, D.T. (1990), "Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents", Mutation Research , 231(1): 11-30.

Bronstein, S.M., J.E. Cochrane, T.R. Craft, J.A. Swenberg and T.R. Skopek (1991), "Toxicity, mutagenicity, and mutational spectra of N-ethyl-N-nitrosourea in human cell lines with different DNA repair phenotypes", Cancer Research, 51(19): 5188-5197.

Bronstein, S.M., T.R. Skopek and J.A. Swenberg (1992), "Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells", Cancer Research, 52(7): 2008-2011.

Drabløs, F., E. Feyzi, P.A. Aas, C.B. Vaagbø, B. Kavli, M.S. Bratlie, J. Peña-Diaz, M. Otterlei, G. Slupphaug and H.E. Krokan (2004), "Alkylation damage in DNA and RNA--repair mechanisms and medical significance", DNA Repair, 3(11): 1389-1407.

Duncan, T., S.C. Trewick, P. Koivisto, P.A. Bates, T. Lindahl and B. Sedgwick B (2002), "Reversal of DNA alkylation damage by two human dioxygenases", Proc. Natl. Acad. Sci. USA, 99(26): 16660-16665.

Fang, Q., S. Kanugula, J.L. Tubbs, T.A. Tainer and A.E. Pegg (2010), "Repair of O4-alkylthymine by O6-alkylguanine-DNA alkyltransferases", J. Biol. Chem. 12(285): 885-895.

Frei, J.V., D.H .Swenson, W. Warren, P.D. Lawley (1978), "Alkylation of deoxyribonucleic acid in vivo in various organs of C57BL mice by the carcinogens N-methyl-N-nitrosourea, N-ethyl-N-nitrosourea and ethyl methanesulphonate in relation to induction of thymic lymphoma. Some applications of high-pressure liquid chromatography", Biochem. J., 174(3): 1031-1044.

Kaina, B., M. Christmann, S. Naumann and W.P. Roos (2007), "MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents", DNA Repair, 6: 1079–1099.

Latypov, V.F., J.L. Tubbs, A.J. Watson, A.S. Marriott, G. McGown, M. Thorncroft, O.J. Wilkinson, P. Senthong, A. Butt, A.S. Arvai, C.L. Millington, A.C. Povey, D.M. Williams, M.F. Santibanez-Koref, J.A. Tainer and G.P. Margison GP (2012), "Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines", Mol. Cell, 47(1): 50-60.

Muller, L., E. Gocke, T. Lave and T. Pfister (2009), "Ethyl methanesulfonate toxicity in Viracept – a comprehensive assessment based on threshold data for genotoxicity", Toxicology Letters, 190: 317-329.

O’Brien, J.M., M. Walker, A. Sivathayalan, G.R. Douglas, C.L. Yauk and F. Marchetti (2015), "Sublinear response in lacZ mutant frequency of Muta™ Mouse spermatogonial stem cells after low dose subchronic exposure to N-ethyl-N-nitrosourea", Environ. Mol. Mutagen., 56(4): 347-55.

Pegg, A.E. (2011), "Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools", Chem. Res. Toxicol., 24(5): 618-639.

Scherer, E., A.A. Jenner and L. den Engelse (1987), "Immunocytochemical studies on the formation and repair of O6-alkylguanine in rat tissues", IARC Sci. Publ., 84: 55-8.

Sega, G.A., C.R. Rohrer, H.R. Harvey and A.E. Jetton (1986), "Chemical dosimetry of ethyl nitrosourea in the mouse testis", Mutat. Res., 159(1-2): 65-74.

Seiler, F., K. Kamino, M. Emura, U. Mohr and J. Thomale (1997), "Formation and persistence of the miscoding DNA alkylation product O6-ethylguanine in male germ cells of the hamster", Mutat. Res., 385(3): 205-211.

Shrivastav, N., D. Li and J.M. Essignmann (2010), "Chemical biology of mutagenesis and DNA repair: cellular response to DNA alkylation", Carcinogenesis, 31(1): 59-70.

van Zeeland, A.A., A. de Groot and A. Neuhäuser-Klaus (1990), "DNA adduct formation in mouse testis by ethylating agents: a comparison with germ-cell mutagenesis", Mutat. Res., 231(1):55-62.

Wyatt, M.D., J.M. Allan, A.Y. Lau, T.E. Ellenberger, L.D. Samson (1999), "3-methyladenine DNA glycosylases: structure, function, and biological importance", Bioessays, 21(8): 668-676.

York S.J. and P. Modrich (2006), "Mismatch repair-dependent iterative excision at irreparable O6-methylguanine lesions in human nuclear extracts", J. Biol. Chem., 281(32): 22674-22683.