To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:2470
Relationship: 2470
Title
Decreased ciliated cell apoptosis leads to Goblet cell metaplasia
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
EGFR Activation Leading to Decreased Lung Function | adjacent | Moderate | Low | Cataia Ives (send email) | Under development: Not open for comment. Do not cite | Under Development |
Taxonomic Applicability
Sex Applicability
Sex | Evidence |
---|---|
Mixed | Low |
Life Stage Applicability
Term | Evidence |
---|---|
All life stages | Low |
Key Event Relationship Description
Following injury, airway epithelial repair is accomplished by (transient) remodeling processes. In the absence of cell proliferation, this remodeling is thought to be facilitated by transdifferentiation, i.e. the generation of specialized cell types, such as goblet cells, from other specialized cells, such as ciliated and club cells (Evans et al., 2004; Tesfaigzi, 2006). This transdifferentiation results in what pathologists refer to as goblet cell metaplasia.
Transdifferentiation frequently occurs following airway epithelial injury by inhalation exposures (e.g. cigarette smoke, sulfur dioxide, endotoxin, viruses). Subsequent tissue repair processes are thought to initiate the transdifferentiation process, whereby ciliated epithelial cells first dedifferentiate and then redifferentiate to goblet cells, without an apparent increase in the total number of epithelial cells (Lumsden et al., 1984; Shimizu et al., 1996; Reader et al., 2003). Alternatively, transdifferentiation may occur following the activation of EGFR-mediated anti-apoptotic signaling in ciliated epithelial cells. Subsequent stimulation by proinflammatory stimuli such as the Th2 cytokines interleukin (IL)-4 and IL-13 then promotes transdifferentiation of ciliated cells into goblet cells, thereby increasing the number of goblet cells (“second hit hypothesis”) in mouse tracheal epithelium and airway epithelia of COPD patients (Laoukili et al., 2001; Tyner et al., 2006; Curran and Cohn, 2010).
Evidence Collection Strategy
Evidence Supporting this KER
There is no direct evidence linking decreased apoptosis in ciliated cells to their transdifferentiation, because these events were not systematically examined yet. Co-localization of EGFR and β-tubulin, a ciliated cell marker, but not CCSP (secretory cell marker) or MUC5AC (goblet cell marker) expression was observed in mouse airways 21 days after inoculation with Sendai virus and in the airways of asthma patients (Tyner et al., 2006; Takeyama et al., 2001). In addition, ciliated cell tagging studies in vitro indicated that the number of ciliated cells decreases following treatment with IL-13, while the number of goblet cells increases (Turner et al., 2011). Together these studies are supportive of transdifferentiation of ciliated cells, sustained by anti-apoptotic signaling, into goblet cells.
Biological Plausibility
While the evidence linking decreased apoptosis in ciliated cells to their transdifferentiation is indirect or correlative (Tyner et al., 2006; Silva and Bercik, 2012; Reader et al., 2003; Turner et al., 2011; Ayers et al., 1988; Jefferey et al., 1984), decreased ciliated cell apoptosis following exposure may imply that a (numerically stable) pool of cells is available for IL-13- and/or IL-4-mediated transdifferentiation to goblet cells (Curran and Cohn, 2010). Therefore, our confidence in the biological plausibility of this KER is low.
Empirical Evidence
Co-localization of EGFR and β-tubulin but not CCSP or MUC5AC expression was observed in Sendai virus-infected mouse airways and in the airways of asthma patients (Tyner et al., 2006; Takeyama et al., 2001). In addition, ciliated cell tagging studies in vitro indicated that the number of ciliated cells decreases following treatment with IL-13, while the number of goblet cells increases (Turner et al., 2011). Together these studies are supportive of ciliated cells transdifferentiating into goblet cells.
Increased numbers of goblet cells were found following exposure to sulfur dioxide in the periphery of rat lungs, where there are normally none, and this increase was not proportional to the mitotic count (Lamb and Reid, 1968). This suggests that goblet cell numbers did not increase due to proliferation and could instead have resulted from differentiation of ciliated cells, giving rise to goblet cell metaplasia. Similarly, metaplasia in rat nasal epithelium was associated with low mitotic rates and increased numbers of goblet cells, suggesting that differentiation into goblet cells occurred rather than goblet cell proliferation (Shimizu et al., 1996; Lamb and Reid, 1968).
Uncertainties and Inconsistencies
Experimental evidence in support of this KER is not in agreement with other studies, which show that ciliated cells do not give rise to goblet cells during airway remodeling in rodents and humans, and with studies that provide evidence for increased goblet cell proliferation rather than transdifferentiation of ciliated cells (Lumsden et al., 1984; Casalino-Matsuda et al., 2006; Hays et al., 2006; Tesfaigzi et al., 2004; Taniguchi et al., 2001).
Known modulating factors
Unknown
Quantitative Understanding of the Linkage
There is no considerable quantitative understanding of the linkage yet.
Response-response Relationship
Treatment of mouse tracheal epithelial cells, differentiated at the air-liquid interface, with IL-13 (100 ng/mL for 5 days) to stimulate goblet cell formation and subsequently with PD153035 (0.3 μM for 3 days) to block EGFR activation did have no significant effect on the rate of apoptosis in Muc5ac-positive cells, whereas the ciliated epithelial cells exhibited significant caspase-positive staining (increased by ca. 10%) (Tyner et al., 2006).
Time-scale
Treatment of mouse tracheal epithelial cells, differentiated at the air-liquid interface, with IL-13 (100 ng/mL for 5 days) to stimulate goblet cell formation gave rise to a transitional cell population. These transitional cells were most prominent early (1–2 days) after initiation of IL-13 treatment, while mature goblet cells without cilia were most abundant at later times (5 days) after treatment. The same observation of transitional cells showing both goblet and ciliated cell marker expression was made in airway epithelial cells cultured from COPD patients and from otherwise healthy lung transplant donors in response to IL-13, within the first day of IL-13 treatment (Tyner et al., 2006).
Known Feedforward/Feedback loops influencing this KER
Unknown
Domain of Applicability
There are many human studies illustrating transdifferentiation from ciliated to goblet cells or goblet cell metaplasia in 3D airway epithelial models (Gomperts et al., 2007), bronchial or nasal epithelial cells in vitro (Yoshisue and Hasegawa 2004, Turner et al., 2011, Laoukili et al., 2001) and in COPD patients (Tyner et al., 2006). Airway epithelial transdifferentiation and goblet metaplasia were also observed in mice (Tyner et al., 2006, Fujisawa et al., 2008) and in rats (Shim et al., 2001; Takeyama et al., 2008). However, to our knowledge, none of these studies measured transdifferentiation of ciliated to goblet cells directly.
References
Ayers, M., and Jeffery, P. (1988). Proliferation and differentiation in mammalian airway epithelium. Eur. Respir. J. 1, 58-80.
Casalino-Matsuda, S.M., Monzón, M.E., and Forteza, R.M. (2006). Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am. J. Resp. Cell Mol. Biol. 34, 581-591.
Curran, D.R., and Cohn, L. (2010). Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am. J. Resp. Cell Mol. Biol. 42, 268-275.
Evans, C.M., Williams, O.W., Tuvim, M.J., Nigam, R., Mixides, G.P., Blackburn, M.R., et al. (2004). Mucin Is produced by Clara cells in the proximal airways of antigen-challenged mice. Am. J. Respir. Cell Mol. Biol. 31, 382-394.
Hays, S.R., and Fahy, J.V. (2006). Characterizing mucous cell remodeling in cystic fibrosis: relationship to neutrophils. Am. J. Resp. Crit. Care Med. 174, 1018-1024.
Jefferey, P., Rogers, D., Ayers, M., and Shields, P. (1984). Structural aspects of cigarette smoke-induced pulmonary disease. In Smoking and the Lung (Springer), pp. 1-31.
Lamb, D., and Reid, L. (1968). Mitotic rates, goblet cell increase and histochemical changes in mucus in rat bronchial epithelium during exposure to sulphur dioxide. J. Pathol. Bacteriol. 96, 97-111.
Laoukili, J., Perret, E., Willems, T., Minty, A., Parthoens, E., Houcine, O., et al. (2001). IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J. Clin. Invest. 108, 1817-1824.
Lumsden, A.B., McLean, A., and Lamb, D. (1984). Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax 39, 844-849.
Reader, J.R., Tepper, J.S., Schelegle, E.S., Aldrich, M.C., Putney, L.F., Pfeiffer, J.W., and Hyde, D.M. (2003). Pathogenesis of mucous cell metaplasia in a murine asthma model. Am. J. Pathol. 162, 2069-2078.
Shimizu, T., Takahashi, Y., Kawaguchi, S., and Sakakura, Y. (1996). Hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium induced by endotoxin. Am. J. Respir. Crit. Care Med. 153, 1412-1418.
Silva, M.A., and Bercik, P. (2012). Macrophages are related to goblet cell hyperplasia and induce MUC5B but not MUC5AC in human bronchus epithelial cells. Lab. Invest. 92, 937-948.
Takeyama, K., Fahy, J., and Nadel, J. (2001). Relationship of epidermal growth factor receptors to goblet cell production in human bronchi. Am. J. Resp. Crit. Care Med. 163, 511-516.
Taniguchi, K., Yamamoto, S., Aoki, S., Toda, S., Izuhara, K., and Hamasaki, Y. (2011). Epigen is induced during the interleukin-13–stimulated cell proliferation in murine primary airway epithelial cells. Exp. Lung Res. 37, 461-470.
Tesfaigzi, Y., Harris, J.F., Hotchkiss, J.A., and Harkema, J.R. (2004). DNA synthesis and Bcl-2 expression during development of mucous cell metaplasia in airway epithelium of rats exposed to LPS. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L268-L274.
Tesfaigzi, Y., Harris, J.F., Hotchkiss, J.A., and Harkema, J.R. (2004). DNA synthesis and Bcl-2 expression during development of mucous cell metaplasia in airway epithelium of rats exposed to LPS. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L268-L274.
Turner, J., Roger, J., Fitau, J., Combe, D., Giddings, J., Heeke, G.V., and Jones, C.E. (2011). Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am. J. Resp. Cell Mol. Biol. 44, 276-284.
Tyner, J.W., Kim, E.Y., Ide, K., Pelletier, M.R., Roswit, W.T., Morton, J.D., Battaile, J.T., Patel, A.C., Patterson, G.A., Castro, M., et al. (2006). Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J. Clin. Invest. 116, 309-321.
Yoshisue, H., and Hasegawa, K. (2004). Effect of MMP/ADAM inhibitors on goblet cell hyperplasia in cultured human bronchial epithelial cells. Biosci. Biotech. Biochem. 68, 2024-2031.