This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 738

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Altered, Meiotic chromosome dynamics leads to Altered, Chromosome number

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Chemical binding to tubulin in oocytes leading to aneuploid offspring adjacent Low Cataia Ives (send email) Open for citation & comment EAGMST Under Review

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
mouse Mus musculus Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Female Moderate

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Chromosome dynamics refers to the ability of chromosomes to congress at the metaphase plate before segregation and attach in an amphitelic orientation [Mailhes and Marchetti, 2010]. Amphitelic refers to the proper attachment of homologous chromosomes to a bipolar spindle and their orientation to opposite poles. Each daughter cell is then expected to receive one chromosome (composed of two chromatids), resulting in a haploid state. Cells have the SAC that monitors chromosome dynamics and should prevent anaphase from occurring in the presence of misaligned chromosomes, however, especially in oocytes, the SAC is not always able to arrest meiotic progression in the presence of misaligned chromosomes.

In this KER, alterations in chromosome dynamics lead to incorrect congression and alignment. In addition, the SAC fails to prevent chromosome segregation, resulting in an aneuploid cell.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

Weak.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The weight of evidence for this KER is weak. The mechanistic aspects of chromosome dynamics are well understood [Bennabi et al., 2016; Touati and Wassmann, 2016]. It is broadly understood that correct chromosome alignment is required for to produce an egg with the correct number of chromosomes and that the probability of an aneuploid egg is increased when chromosomes fail to align correctly. However, chromosome misalignment does not always lead to subsequent errors in chromosome segregation. This may be due in part to the important role of the SAC in blocking chromosome segregation when chromosomes are not correctly aligned [Amon, 1999; Musacchio and Salmon, 2007; Polanski, 2013; Musacchio, 2015]. At this time, there is not complete mechanistic understanding of every step in this process.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Although there are no inconsistent results reported, it is important to note that very few studies have measured chromosome dynamics and induction of aneuploidy in oocytes.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help

Due to the lack of information about the shape of the response-response relationship, modulating factors cannot be identified in this KER.

Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

Data are available on the dose-response relationship for aneuploidy induction in oocytes (KEdownstream) treated with colchicine [Mailhes et al., 1988; Mailhes et al., 1990], vinblastine [Russo and Pacchierotti, 1988; Mailhes et al., 1993] or 2-methoxyestradiol [Eichenlaub-Ritter et al., 2007], which are consistent with the threshold relationship established in mitotic cells [Elhajouji et al., 2011]. Unfortunately, dose-effect relationships have not been established for chromosome dynamics alterations (KEupstream) at the first meiotic division. Thus, it is not possible to establish the shape of the response-response relationship between chromosome dynamics alteratiions (KEupstream) and altered chromosome nubmer in oocytes (KEdownstream).

Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help

As noted before, chromosome dynamics on the metaphase plate of oocytes may last a few hours before anaphase onset. The first meiotic anaphase lasts about 25 min equally distributed between anaphase-1, characterized by increased spindle length and movement of chromosomes towards the poles, and anaphase-2 at the end of which chromosomes reach the poles and aggregate into condensed clusters [Wei et al., 2018]. Thus, it is expected that alterations of chromosome number in the oocyte (KEdownstream) would lag alterations of meiotic chromosome dynamics (KEupstream) by hours, although no studies have been carried out until now to specifically address the time-scale of events linking chromosome dynamics alteratiions (KEupstream) and altered chromosome nubmer in oocytes (KEdownstream).

Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

In mitotic and meiotic cells, anaphase onset and ensuing chromosome distribution is under checkpoint control that may delay anaphase onset until chromosomes are correctly aligned on the spindle equator, as signaled by specific molecular events [Nagaoka et al., 2012; Musacchio et al., 2015; Webster and Schuh, 2017]. Although the SAC in mammalian oocytes is deemed to be more tolerant to the presence of unaligned chromosomes, its role in preventing aneuploidy is proven in genetically modified or silenced systems [Mailhes and Marchetti 2010]. These checkpoint and signaling mechanisms therefore are expected to act as feedback loops, which may influence the time-scale of the KER between KEupstream (altered chromosome dynamics) and altered chromosome number in the oocyte (KEdownstream).

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Although this KER has only been measured in mouse oocytes, the process of meiosis, spindle formation and chromosome congression in eggs is thought to be similar across mammalian species.

References

List of the literature that was cited for this KER description. More help

Amon A. 1999. The spindle checkpoint. Curr Opin Genet Dev 9:69-75.

Baumann C, Wang X, Yang L, Viveiros MM. 2017. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci 130:1251-1262.

Bennabi I, Terret ME, Verlhac MH. 2016. Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol 215:611-619.

Eichenlaub-Ritter U, Winterscheidt U, Vogt E, Shen Y, Tinneberg HR, Sorensen R. 2007. 2-methoxyestradiol induces spindle aberrations, chromosome congression failure, and nondisjunction in mouse oocytes. Biol Reprod 76:784–793.

Elhajouji A, Lukamowicz M, Cammerer Z, Kirsch-Volders M. 2011. Potential thresholds for genotoxic effects by micronucleus scoring. Mutagenesis 26:199-204.

Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ. 2003. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr Biol 13:546-553.

Mailhes JB, Preston RJ, Yuan ZP, Payne HS. 1988. Analysis of mouse metaphase II oocytes as an assay for chemically induced aneuploidy. Mutat Res 198:145–152.

Mailhes JB, Yuan ZP, Aardema MJ. 1990. Cytogenetic analysis of mouse oocytes and one-cell zygotes as a potential assay for heritable germ cell aneuploidy. Mutat Res 242:89–100.

Mailhes JB, Aardema MJ, Marchetti F. 1993. Investigation of aneuploidy induction in mouse oocytes following exposure to vinblastine-sulfate, pyrimethamine, diethylstilbestrol diphosphate, or chloral hydrate. Environ Mol Mutagen 22:107–114.

Mailhes JB, Marchetti F. 2010. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. Exp Rev Obst Gyn 5:687–706.

McGuinness BE, Anger M, Kouznetsova A, Gil-Bernabe AM, Helmhart W, Kudo NR, Wuensche A, Taylor S, Hoog C, Novak B, Nasmyth K. 2009. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr Biol 19:369-380.

Musacchio A. 2015. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25:R1002-R1018.

Musacchio A, Salmon ED. 2007. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8:379-93.

Nagaoka SI, Hassold TJ, Hunt PA. 2012. Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504.

Ou XH, Li S, Xu BZ, Wang ZB, Quan S, Li M, Zhang QH, Ouyang YC, Schatten H, Xing FQ, Sun QY. 2010. p38alpha MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 9:4130-4143.

Polanski Z. 2013. Spindle assembly checkpoint regulation of chromosome segregation in mammalian oocytes. Reprod Fertil Dev 25:472-483.

Russo A, Pacchierotti F. 1988. Meiotic arrest and aneuploidy induced by vinblastine in mouse oocytes. Mutat Res 202:215–221.

Shen Y, Betzendahl I, Sun F, Tinneberg HR, Eichenlaub-Ritter U. 2005. Non-invasive method to assess genotoxicity of nocodazole interfering with spindle formation in mammalian oocytes. Reprod Toxicol 19:459–471.

Touati SA, Wassmann K. 2016. How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma 125:321-335.

Webster A, Schuh M. 2017. Mechanisms of aneuploidy in human eggs. Trends Cell Biol 27:55-68.

Wei Z, Greaney J, Zhou C, Homer H. 2018. Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nature Comm 9:4029. DOI: 10.1038/s41467-018-06510-9.