This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 833

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Covalent Binding, Protein leads to Activation, Keratinocytes

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Covalent Protein binding leading to Skin Sensitisation adjacent High Agnes Aggy (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help

Sex Applicability

An indication of the the relevant sex for this KER. More help

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Uptake of the hapten-protein complex by keratinocytes activates multiple events, including the release of pro-inflammatory cytokines and the induction of cyto-protective cellular pathways. Activation of the pro-inflammatory cytokine IL-18 results from cleavage of inactive IL-18 precursor protein by inflammasome-associated caspase-1[1]. Hapten-protein complexes can activate the inflammasome ([2];[3]) and in so doing induce IL-18 production. Intracellular Nod-like receptors (NLR) contain sensors for a number of cellular insults. Upon activation (by a currently unknown mechanism), NLRs oligomerise form molecular complexes (i.e. inflammasomes) that are involved in the activation of inflammatory-associated caspases, including caspase-1. Keratinocyte exposure to hapten-protein complex also results in induction of antioxidant/electrophile response element ARE/EpRE-dependent pathways[4]. Briefly, reactive chemicals bind to Keap1 (Kelch-like ECH-associates protein 1) that normally inhibits the nuclear erythroid 2-related factor 2 (Nrf2). Released Nrf2 interacts with other nuclear proteins and binds to and activates ARE/EpREdependent pathways, including the cytoprotective genes NADPH-quinone oxidoreductase 1 (NQO1) and glutathione S-transferase (GSHST), among others ([4];[5]).

This KER description is based only on the OECD document 2012 and needs updating.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

It is well accepted and experimentally proved that upon hapten application, keratinocytes are activated and produce various chemical mediators (e.g. TNF, IL-1β, and prostaglandin E2) [6];[7].

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

References

List of the literature that was cited for this KER description. More help
  1. Martinon F, Mayor A, Tschopp J. 2009. The inflammasomes: guardians of the body. Ann. Rev. Immunol. 27: 229-265.
  2. 2.0 2.1 Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA. 2006. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24: 317-327.
  3. 3.0 3.1 Watanabe H, Gaide O, Pétrilli V, Martinon F, Contassot E, Roques S, Kummer JA, Tschopp J, French LE. 2007. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J. Invest. Dermatol. 127: 1956-1963.
  4. 4.0 4.1 Natsch A and Emter R. 2008. Skin sensitizers induce antioxidant response element dependent genes: Application to the in vitro testing of the sensitisation potential of chemicals. Toxicol. Sci. 102: 110-119.
  5. Ade N, Leon F, Pallardy M, Pfeiffer JL, Kerdine-Romer S, Tissier MH, Bonnet PA, Fabre I Ourlin JC. 2009. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway. Toxicol. Sci. 107: 451-460.
  6. 6.0 6.1 Honda T, Egawa G, Grabbe S, Kabashima K. 2013. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J. Invest. Dermatol. 133: 303-315.
  7. Erkes DA, Selvan RS. 2014. Hapten-induced contact hypersensitivity, autoimmune reactions, and tumour regression: plausibility of mediating antitumor immunity. J. Immunol. Res. Article ID 175265.
  8. Simonsson C, Andersson SI, Stenfeldt AL, Bergstrom J, Bauer B, Jonsson CA, Ericson MB, Broo KS. 2011. Caged fluorescent haptens reveal the generation of cryptic epitopes in allergic contact dermatitis. J.Invest. Immunol. 131: 1486-1493.
  9. Watanabe H, Gehrke S, Contassot E, et al. 2008. Danger signalling through the inflammasone acts as a master switch between tolerance and sensitization. J. Immunol. 180:5826-5832.
  10. Antonopoulos C, Cumberbatch M, Dearman RJ, Daniel RJ, Kimber I, Groves RW. 2001. Functional caspase-1 is required for Langerhans cell migration and optimal contact sensitization in mice. J. Immunol. 166: 3672-3677.
  11. Nakae S, Komiyama Y, Narumi S, Sudo K, Horai R, Tagawa Y, Matsushima K, Asano M, Iwakura Y. 2003. IL-1-induced tumor necrosis factor-alpha elicits inflammatory cell infiltration in the skin by inducing IFN-γ-inducible protein 10 in the elicitation phase of the contact hypersensitivity response. Int. Immunol. 15(2): 251-260.
  12. Antonopoulos C, Cumberbatch M, Mee JB, Dearman RJ, Wei XQ, Liew FY, Kimber I, Groves RW. 2008. IL-18 is a key proximal mediator of contact hypersensitivity and allergen-induced Langerhans cell migration in murine epidermis. J. Leukocyte Biol. 83: 361-367.