This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 834
Title
Activation, Keratinocytes leads to Activation, Dendritic Cells
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
Covalent Protein binding leading to Skin Sensitisation | adjacent | Moderate | Agnes Aggy (send email) | Open for citation & comment | WPHA/WNT Endorsed |
Taxonomic Applicability
Sex Applicability
Life Stage Applicability
Key Event Relationship Description
Uptake of the hapten by keratinocytes activates multiple events, including the release of pro-inflammatory cytokines (e.g. IL-18) and the induction of cyto-protective cellular pathways. Under the influence of fibroblast- blood endothelial- and lymph endothelial-chemokines (e.g. CCL19, CCL21) and epidermal cytokines (e.g. interleukin (IL), IL-1 α, IL-1β, IL-18, tumour necrosis factor alpha (TNF-α)) maturing dendritic cells migrate from the epidermis to the dermis of the skin and then to the proximal lymph nodes, where they can present the hapten-protein complex to T-cells via a major histocompatibility complex molecule ([1];[2]).
This KER description is based only on the OECD document 2012 and needs updating.
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
Keratinocyte response activates multiple events, including the release of pro-inflammatory cytokines (e.g. IL-18) and the induction of cyto-protective cellular pathways. Under the influence of fibroblast- blood endothelial- and lymph endothelial-chemokines (e.g. CCL19, CCL21) and epidermal cytokines (e.g. IL-1 α, IL-1β, IL-18, tumour necrosis factor alpha (TNF-α)) maturing dendritic cells migrate from the epidermis to the dermis of the skin and then to the proximal lymph nodes[1];[2].
Empirical Evidence
Matjeka et al. (2012) exposed HaCaT cell line used as a model of human keratinocytes to skin sensitisers for one hour and then, after washed off, cocultured them with dendritic cells. Data showed that exposure of dendritic cells to chemically treated HaCaT cells led to the activation of dendritic cells measured by CD83 and CD86 upregulation[3].
Uncertainties and Inconsistencies
Known modulating factors
Quantitative Understanding of the Linkage
Response-response Relationship
Time-scale
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
References
- ↑ 1.0 1.1 Antonopoulos C, Cumberbatch M, Mee JB, Dearman RJ, Wei XQ, Liew FY, Kimber I, Groves RW. 2008. IL-18 is a key proximal mediator of contact hypersensitivity and allergen induced Langerhans cell migration in murine epidermis. J. Leukoc. Biol. 83: 361-367.
- ↑ 2.0 2.1 Ouwehand K, Santegoets SJAM, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S. 2008. CXCL12 is essential for migration of activated Langerhans cells for epidermis to dermis. Eur. J. Immunol. 38: 3050-3059.
- ↑ Matjeka T, Summerfield V, Noursadeghi M, Chain BM. 2012. Chemical toxicity to keratinocytes triggers dendritic cell activation via an IL-1 path. J. Allergy Clin. Immunol. Letters to the editor:247-205.