Aop: 321


Each AOP should be given a descriptive title that takes the form “MIE leading to AO”. For example, “Aromatase inhibition [MIE] leading to reproductive dysfunction [AO]” or “Thyroperoxidase inhibition [MIE] leading to decreased cognitive function [AO]”. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE. More help

Reduced environmental pH leading to thinner shells in Mytilus edulis

Short name
A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
Thinner shells in Mytilus Edulis due to ocean acidifcation

Graphical Representation

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (see this page for example). The graphical summary is prepared and uploaded by the user (templates are available) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP Development Workplan. The graphical representation or AOP diagram provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP (for more information please see page 19 of the Users' Handbook).If you already have a graphical representation of your AOP in electronic format, simple save it in a standard image format (e.g. jpeg, png) then click ‘Choose File’ under the “Graphical Representation” heading, which is part of the Summary of the AOP section, to select the file that you have just edited. Files must be in jpeg, jpg, gif, png, or bmp format. Click ‘Upload’ to upload the file. You should see the AOP page with the image displayed under the “Graphical Representation” heading. To remove a graphical representation file, click 'Remove' and then click 'OK.'  Your graphic should no longer be displayed on the AOP page. If you do not have a graphical representation of your AOP in electronic format, a template is available to assist you.  Under “Summary of the AOP”, under the “Graphical Representation” heading click on the link “Click to download template for graphical representation.” A Powerpoint template file should download via the default download mechanism for your browser. Click to open this file; it contains a Powerpoint template for an AOP diagram and instructions for editing and saving the diagram. Be sure to save the diagram as jpeg, jpg, gif, png, or bmp format. Once the diagram is edited to its final state, upload the image file as described above. More help


List the name and affiliation information of the individual(s)/organisation(s) that created/developed the AOP. In the context of the OECD AOP Development Workplan, this would typically be the individuals and organisation that submitted an AOP development proposal to the EAGMST. Significant contributors to the AOP should also be listed. A corresponding author with contact information may be provided here. This author does not need an account on the AOP-KB and can be distinct from the point of contact below. The list of authors will be included in any snapshot made from an AOP. More help

Submitted by James Ducker, PhD student in Marine Biology at the Chinese University of Hong Kong (CUHK), Hong Kong SAR. 

Point of Contact

Indicate the point of contact for the AOP-KB entry itself. This person is responsible for managing the AOP entry in the AOP-KB and controls write access to the page by defining the contributors as described below. Clicking on the name will allow any wiki user to correspond with the point of contact via the email address associated with their user profile in the AOP-KB. This person can be the same as the corresponding author listed in the authors section but isn’t required to be. In cases where the individuals are different, the corresponding author would be the appropriate person to contact for scientific issues whereas the point of contact would be the appropriate person to contact about technical issues with the AOP-KB entry itself. Corresponding authors and the point of contact are encouraged to monitor comments on their AOPs and develop or coordinate responses as appropriate.  More help
Cataia Ives   (email point of contact)


List user names of all  authors contributing to or revising pages in the AOP-KB that are linked to the AOP description. This information is mainly used to control write access to the AOP page and is controlled by the Point of Contact.  More help
  • James Ducker
  • Cataia Ives


The status section is used to provide AOP-KB users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. “Author Status” is an author defined field that is designated by selecting one of several options from a drop-down menu (Table 3). The “Author Status” field should be changed by the point of contact, as appropriate, as AOP development proceeds. See page 22 of the User Handbook for definitions of selection options. More help
Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite
This AOP was last modified on May 08, 2022 11:33
The date the AOP was last modified is automatically tracked by the AOP-KB. The date modified field can be used to evaluate how actively the page is under development and how recently the version within the AOP-Wiki has been updated compared to any snapshots that were generated. More help

Revision dates for related pages

Page Revision Date/Time


In the abstract section, authors should provide a concise and informative summation of the AOP under development that can stand-alone from the AOP page. Abstracts should typically be 200-400 words in length (similar to an abstract for a journal article). Suggested content for the abstract includes the following: The background/purpose for initiation of the AOP’s development (if there was a specific intent) A brief description of the MIE, AO, and/or major KEs that define the pathway A short summation of the overall WoE supporting the AOP and identification of major knowledge gaps (if any) If a brief statement about how the AOP may be applied (optional). The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance More help

Despite contemporary scientific efforts focusing on better understanding the consequences of ocean acidification, the overwhelming abundance of novel findings may be undermining the applications of studies. Climate research may benefit from the development of a conceptual framework synthesizing the sequential cascade of responses initiated by environmental stressors, termed Adverse Outcome Pathways (AOP) (Ankley et al., 2010).

Preliminary AOP for Mytilus edulis indicates that OA has a myriad of repercussions across biological levels, with multiple potential adverse outcomes to consider. The impacts are interconnected and demonstrate how molecular processes may affect whole-organism processes. The studies considering M. edulis provide a comprehensive AOP as it is a well-studied species, with most impacts at individual (whole-organism) level. 

Based on the evidence gathered to design this AOP, the following pathway was developed from the MIE of reduced environmental pH leading to alterations in genes encoding calcification and metabolic pathways. Following such alterations, signifcant changes were documented at cellular and organ level, including an imbalance in acid-base status, which led to the deregulation of growth and development at the individual level. Ultimately, such impacts resulted in the decline of populations. However, it is essential to note that these outcomes were not observed unilaterally. 

Indeed, frequent variation in outcomes was observed across studies. In particular, variations in the pathway was documented between sexes, life stages and temporal scales. Despite such variation the application of the AOP framework offers a unique perspective synthesizing our current understanding. Moreover, future research progressing our understanding on synergistic effects would further improve the efficacy of AOPs in climate research (Falkenberg et al., 2013).

Background (optional)

This optional subsection should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. Examples of potential uses of the optional background section are listed on pages 24-25 of the User Handbook. More help

Over the past two decades, it is estimated that over half of global carbon dioxide emissions has been absorbed by the oceans (Sabine et al., 2004), resulting in the average oceanic pH declining by 0.1 units compared to pre-industrial levels in a process termed ocean acidification (OA) (Caldeira et al., 2005).

Predictions have mainly focused on surface ocean waters resulting in weak representation for coastal ecosystems and taxonomic groups within them (Fabri et al., 2008) despite their socioeconomic value (Falkenberg and Tubb 2017). One such group are the molluscs, which are used as valuable ecological models and represent a taxon of widespread aqua cultural importance in coastal systems (Costanza et al., 1997). Additionally, molluscs are comparatively well studied in terms of climate related impacts and therefore provide extensive information useful to be used in novel frameworks (e.g. see review by Gazeau et al 2013).

Ocean acidification is recognised to impact the physiology, behaviour and evolution of molluscs (Kroeker et al. 2010; Gazeau et al. 2013). Organisms with calcium carbonate-based shells may be particularly susceptible due to the dependence of shell formation on pH and carbon chemistry (Beniash et al. 2010; Tomanek et al. 2011; Parker et al. 2012). However, the severity of impacts is unclear as calcifying organisms may be resilient to highly variable coastal environments (Duarte et al. 2013) and are also known to exhibit varying sensitivities depending on biological context including factors such as life stage, community composition and nutritional status (Kroeker et al., 2013). Moreover, the effects of acidification are known to synergistically interact with other anthropogenic stressors, such as toxicants (Cao et al., 2018, 2019) and climatic stressors, particularly ocean warming (Kroeker et al., 2013).

Climate research may benefit from the development of a conceptual framework synthesizing the sequential cascade of responses initiated by environmental stressors, termed Adverse Outcome Pathways (AOP) (Ankley et al., 2010). AOPs were first developed in 1992 and have been used primarily for toxicology purposes in order to collect key information on the sequential consequences of toxicants across biological processes (see Figure 1). Since being implemented, the adoption of AOPs has gained momentum leading to the design of online databases gathering information on a myriad of stressors and their impacts around the globe ( AOPs are used to synthesize information for actions plans, establishing risk assessments supported by empirical data on biological context and spatiotemporal trends aiming to improve risk characterization of targeted species to particular stressors (Ankley et al., 2010). To date, the AOP framework has yet to be used to address ocean acidification, with few examples applied to climate science even if AOPs can incorporate vital biological pathways impacted by climatic stressors (Hooper et al., 2013). Indeed, the effects of anthropogenic climate change (e.g. increased temperatures, hypoxia or acidification) are akin to human derived toxicants as they represent a potentially lethal threat to organisms that have yet to experience such severe and frequent alterations in environmental conditions. Thus, AOPs would provide a unique and comprehensive tool using a risk assessment approach to climate related impacts on ecosystems and the species within them (Falkenberg et al., 2018; Hooper et al., 2013). 

Summary of the AOP

This section is for information that describes the overall AOP. The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help


Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a stressor and the biological system) of an AOP. More help
Key Events (KE)
This table summarises all of the KEs of the AOP. This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry acts as a link to the individual KE description page.  More help
Adverse Outcomes (AO)
An AO is a specialised KE that represents the end (an adverse outcome of regulatory significance) of an AOP.  More help

Relationships Between Two Key Events (Including MIEs and AOs)

This table summarises all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the individual KER description page.To add a key event relationship click on either Add relationship: events adjacent in sequence or Add relationship: events non-adjacent in sequence.For example, if the intended sequence of KEs for the AOP is [KE1 > KE2 > KE3 > KE4]; relationships between KE1 and KE2; KE2 and KE3; and KE3 and KE4 would be defined using the add relationship: events adjacent in sequence button.  Relationships between KE1 and KE3; KE2 and KE4; or KE1 and KE4, for example, should be created using the add relationship: events non-adjacent button. This helps to both organize the table with regard to which KERs define the main sequence of KEs and those that provide additional supporting evidence and aids computational analysis of AOP networks, where non-adjacent KERs can result in artifacts (see Villeneuve et al. 2018; DOI: 10.1002/etc.4124).After clicking either option, the user will be brought to a new page entitled ‘Add Relationship to AOP.’ To create a new relationship, select an upstream event and a downstream event from the drop down menus. The KER will automatically be designated as either adjacent or non-adjacent depending on the button selected. The fields “Evidence” and “Quantitative understanding” can be selected from the drop-down options at the time of creation of the relationship, or can be added later. See the Users Handbook, page 52 (Assess Evidence Supporting All KERs for guiding questions, etc.).  Click ‘Create [adjacent/non-adjacent] relationship.’  The new relationship should be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. To edit a key event relationship, click ‘Edit’ next to the name of the relationship you wish to edit. The user will be directed to an Editing Relationship page where they can edit the Evidence, and Quantitative Understanding fields using the drop down menus. Once finished editing, click ‘Update [adjacent/non-adjacent] relationship’ to update these fields and return to the AOP page.To remove a key event relationship to an AOP page, under Summary of the AOP, next to “Relationships Between Two Key Events (Including MIEs and AOs)” click ‘Remove’ The relationship should no longer be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. More help

Network View

The AOP-Wiki automatically generates a network view of the AOP. This network graphic is based on the information provided in the MIE, KEs, AO, KERs and WoE summary tables. The width of the edges representing the KERs is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. More help


The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help

Life Stage Applicability

Identify the life stage for which the KE is known to be applicable. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help

Overall Assessment of the AOP

This section addresses the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). The goal of the overall assessment is to provide a high level synthesis and overview of the relative confidence in the AOP and where the significant gaps or weaknesses are (if they exist). Users or readers can drill down into the finer details captured in the KE and KER descriptions, and/or associated summary tables, as appropriate to their needs.Assessment of the AOP is organised into a number of steps. Guidance on pages 59-62 of the User Handbook is available to facilitate assignment of categories of high, moderate, or low confidence for each consideration. While it is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate, or low confidence should be made. More help

Domain of Applicability

The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Biological domain of applicability is informed by the “Description” and “Biological Domain of Applicability” sections of each KE and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex applicability is defined based on the groups of organisms for which the measurements represented by the KEs can feasibly be measured and the functional and regulatory relationships represented by the KERs are operative.The relevant biological domain of applicability of the AOP as a whole will nearly always be defined based on the most narrowly restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the biological domain of applicability of the AOP as a whole would be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE and KER descriptions, the rationale for defining the relevant biological domain of applicability of the overall AOP should be briefly summarised on the AOP page. More help

Life stages

Acidification is recognised to impact Mytilus edulis across life stages from larval form through to adult stages. However, sensitivity varies considerably in response to acidification. In particular, embryonic and larval stages are known to be most susceptible to acidifcation, with considerable reductions in size and development resulting in higher mortality (Gazeau et al., 2013; Thomsen et al., 2015).

For the majority of bivalve species and some gastropods that are more primitive, fertilization occurs in the surrounding water; for example, eggs and sperm of bivalves are shed into the suprabranchial cavity where they are released into the water column with the exhalant current (Barnes 1974).

Our knowledge of the impacts of ocean acidification on the fertilization on broadcast spawning shelled molluscs is based on a limited number of studies (9), covering only seven species (Table 2). CO2-induced hypercapnia is believed to have a narcotic effect on sperm, reducing its speed and motility, thereby reducing fertilization success (Havenhand et al. 2008; Byrne 2011; Reuter et al. 2011).

Thus, the present AOP provides an insight into a mechanistic process capable of affecting mussels across life stages. Nonetheless, the variations described above is indicative of the consideration required to extract the exact consequences expected from acidifcation.

Other species

The effects of ocean acidification on the growth and shell production by juvenile and adult shelled molluscs are variable among species and even within the same species, precluding the drawing of a general picture (see Gazeau et al., 2013). This is, however, not the case for pteropods, with all species tested so far, being negatively impacted by ocean acidification. 

Ubiquitous elements? Cellular changes, genes and reactions in other bivalves – similar? Spatiotemporal differences in populations?

The present AOP may be applicable to other bivalve species as the process of calcification is similar across taxa (REFs). 

Physiology and behavioural changes for other taxa or groups

In the mussel M. edulis, for example, exposure to elevated CO2 of 1,120 latm (-0.3 pH unit) for 60 days led to a significant increase in SMR (Thomsen and Melzner 2010). In juveniles of the oyster C. virginica, exposure to elevated CO2 of *3,300 latm (-0.7 pH unit) for 20 weeks, a level much higher than that used in the previous study (and therefore not shown in Fig. 4), caused an increase in SMR which was accompanied by a decrease in both shell and somatic growth and survival (Beniash et al. 2010). A number of other shelled mollusc species have also suffered reduced survival following chronic exposure to elevated CO2 (snail S. lubuanus, Shirayama and Thornton 2005; mussel M. edulis, Berge et al. 2006; clam M. mercenaria, Green et al. 2009; oyster C. virginica, Dickinson et al. 2012; clam T. squamosa, Watson et al. 2012b).

In the limpet Patella vulgata (Marchant et al. 2010), mussels Perna viridis (Liu and He 2012) and M. galloprovincialis (Fernandez-Reiriz et al. 2012) and oyster Pinctada fucata (Liu and He 2012), there was no observable change in SMR during exposure to elevated CO2 (see Fig. 4). Trade-offs in energy allocation may still exist, however, such that metabolic stimulation occurs in one tissue whereas metabolic depression occurs in another (Lannig et al. 2010).

Other stressors

The data suggest for several shelled molluscan species that ocean acidification combined with ocean warming may have even greater impacts than those documented for ocean acidification alone. This is the case, for instance, for the fluted giant clam (Tridacna squamosa) which showed much lower survival when low pH was combined with higher temperature (Watson et al. 2012b).

Essentiality of the Key Events

An important aspect of assessing an AOP is evaluating the essentiality of its KEs. The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence.The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs.When assembling the support for essentiality of the KEs, authors should organise relevant data in a tabular format. The objective is to summarise briefly the nature and numbers of investigations in which the essentiality of KEs has been experimentally explored either directly or indirectly. See pages 50-51 in the User Handbook for further definitions and clarifications.  More help
  • Biological plausibility: Is there a mechanistic (i.e. structural or functional) relationship between KEup and KE down consistent with established biological knowledge?

YES – known physiological processes

  • Empirical support: Does the empirical evidence support that a change in the KEup leads to an appropriate change in the KE down? Does KEup occur at lower doses and earlier time points than KE down and is the incidence of KEup higher than that for KE down?

Type of studies?

Variation in results?

Maybe a non linear relationship between OA amount and thinning of shells

  • Uncertainties and Inconsistencies: conditions for KE to be fulfilled or not, what might interfere with outcomes e.g. dose responses, individual variations, adaptation & acclimation potential

Spatiotemporal variations – biological context etc.

Evidence Assessment

The biological plausibility, empirical support, and quantitative understanding from each KER in an AOP are assessed together.  Biological plausibility of each of the KERs in the AOP is the most influential consideration in assessing WoE or degree of confidence in an overall hypothesised AOP for potential regulatory application (Meek et al., 2014; 2014a). Empirical support entails consideration of experimental data in terms of the associations between KEs – namely dose-response concordance and temporal relationships between and across multiple KEs. It is examined most often in studies of dose-response/incidence and temporal relationships for stressors that impact the pathway. While less influential than biological plausibility of the KERs and essentiality of the KEs, empirical support can increase confidence in the relationships included in an AOP. For clarification on how to rate the given empirical support for a KER, as well as examples, see pages 53- 55 of the User Handbook.  More help

Increased abundance of studies in recent years. 

Ample reviews on the topic considering numerous perspectives. 

Finally, even identical species have shown differing responses of fertilization to ocean acidification. For example, gametes of the Pacific oyster, C. gigas, from populations in Japan (Kurihara et al. 2007) and Sweden (Havenhand and Schlegel 2009) experienced no reduction in percentage fertilization, sperm swimming speed and motility (sperm tested only in the Swedish population) when reared at elevated pCO2 of 1,000–2,300 latm (-0.3 to -0.8 pH unit).

This suggests that intraspecific variation may exist between populations due to both environmental and genetic differences that may lead to within-species differences in fertilization response to ocean acidification stress

The results of the studies to date suggest that for a number of shelled mollusc species, ocean acidification will cause a rise in the cost of maintenance and a shift in energy budgets, unless acclimation across life-history stages or evolutionary adaptation occurs. The tissue and mechanisms responsible for such cost increments have not been identified; however, comparative findings in fish gills indicate that elevated costs of ion and acid–base regulation in gill tissue may be involved (Deigweiher et al. 2009). Future studies would benefit from assessment of the effects of ocean acidification on the entire energy budget of shelled molluscs to identify whether altered partitioning of the energy budget is occurring and which critical fitness-sustaining processes will be most vulnerable.

Very few studies focusing on the effect of ocean acidification on shelled molluscs actually report on the level and on the variations in pH in the ecosystem the organisms were taken from (e.g. Thomsen et al. 2010).

Quantitative Understanding

Some proof of concept examples to address the WoE considerations for AOPs quantitatively have recently been developed, based on the rank ordering of the relevant Bradford Hill considerations (i.e., biological plausibility, essentiality and empirical support) (Becker et al., 2017; Becker et al, 2015; Collier et al., 2016). Suggested quantitation of the various elements is expert derived, without collective consideration currently of appropriate reporting templates or formal expert engagement. Though not essential, developers may wish to assign comparative quantitative values to the extent of the supporting data based on the three critical Bradford Hill considerations for AOPs, as a basis to contribute to collective experience.Specific attention is also given to how precisely and accurately one can potentially predict an impact on KEdownstream based on some measurement of KEupstream. This is captured in the form of quantitative understanding calls for each KER. See pages 55-56 of the User Handbook for a review of quantitative understanding for KER's. More help

Considerations for Potential Applications of the AOP (optional)

At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale.To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page or 'Update and continue' to continue editing AOP text sections.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page. More help

Despite being crucial physiological traits for ecological success, very little is known of the effects of ocean acidification on shelled mollusc health and the potential for shelled mollusc species to resist predators and/or disease. Bibby et al. (2008) showed an effect of acidification (-0.2 to -1.1 pH unit) on the immune response of the blue mussel (M. edulis).

Finally, differences in the accumulation of metals have also been documented in juveniles of the clam, Ruditapes philippinarum, where metal accumulation (Zn, Pb, Cu, Ni, Cr, Hg, As; but not Cd) was found to increase upon exposure to elevated pCO2 for 28 days (-1.0 pH unit; Lopez et al. 2010). This highlights the potential ecotoxicological consequences that may be associated with ocean acidification stress in addition to the developmental and physiological effects that have been documented.

Risk assessments

Ecosystem mangament 


In addition, shelled molluscs have a significant economic value as the global shellfish aquaculture industry reached a global value of US$ 13.1 billion in 2008 (FAO 2008). In recent decades, severe declines in shelled mollusc populations have been reported. Surveys conducted annually along the coast of British Columbia have shown a decline of up to 80 % in some populations since 1978 (Hankewich and Lessard 2006). Moreover, in hatcheries located on the northwest coast of the USA, there has been a year-by-year decline in the survival of oyster larvae since 2005, which appears to be connected to the upwelling of acidified deep waters shifting coastward and associated near-shore ocean acidification (Barton et al. 2012). Indeed, Feely et al. (2008) have noticed that even though seasonal upwelling of waters undersaturated with aragonite (one of the most soluble metastable forms of calcium carbonate) is a natural feature on the northern California shelf, the uptake of anthropogenic CO2 has increased the affected area over recent decades.


List the bibliographic references to original papers, books or other documents used to support the AOP. More help