This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 17
Key Event Title
Altered gene expression, AHR nuclear translocator (ARNT)-dependent pathway
Short name
Biological Context
Level of Biological Organization |
---|
Molecular |
Cell term
Organ term
Key Event Components
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
AHR activation leading to lung cancer via AHR-ARNT tox path | KeyEvent | Brendan Ferreri-Hanberry (send email) | Under development: Not open for comment. Do not cite | |
AHR activation decreasing lung function via AHR-ARNT tox path | KeyEvent | Arthur Author (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Life Stages
Sex Applicability
Key Event Description
Sustained AHR/ARNT dimerization induced by DLCs may sequester ARNT from its other dimerization partners at inappropriate times during embryonic cardiomorphogenesis, disrupting ARNT-dependent cellular functions[1][2]. ARNT serves as a dimerization partner for hypoxia inducible factor 1&alph; (HIF-1α), and this complex is involved in mediating physiological responses to hypoxia. Dimerization between ARNT and HIF-1α forms a transcription factor complex (HIF-1) that binds to hypoxia response enhancer sequences on DNA to activate the expression of genes such as vascular endothelial growth factor (VEGF), which is involved in angiogenesis[3][4][5][6][7].
How It Is Measured or Detected
Domain of Applicability
References
- ↑ Heid, S. E., Walker, M. K., and Swanson, H. I. (2001). Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicol.Sci 61, 187-196.
- ↑ Walker, M. K., Pollenz, R. S., and Smith, S. M. (1997). Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicol.Appl.Pharmacol. 143, 407-419.
- ↑ Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., and Semenza, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol.Cell Biol. 16, 4604-4613.
- ↑ Goldberg, M. A., and Schneider, T. J. (1994). Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J.Biol.Chem. 269, 4355-4359.
- ↑ Jiang, B. H., Rue, E., Wang, G. L., Roe, R., and Semenza, G. L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J.Biol.Chem. 271, 17771-17778.
- ↑ Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., Hankinson, O., Pugh, C. W., and Ratcliffe, P. J. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc.Natl.Acad.Sci U.S.A 94, 8104-8109.
- ↑ Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845.