To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:616

Event: 616

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Occurrence, A paroxysmal depolarizing shift

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Occurrence, A paroxysmal depolarizing shift
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Tissue

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
brain

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
membrane depolarization occurrence

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Blocking iGABA receptor ion channel leading to seizures KeyEvent Cataia Ives (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
Adult High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

A paroxysmal depolarizing shift (PDS) or depolarizing shift is a cellular manifestation of epilepsy. As summarized by Lomen-Hoerth and Messing (2010), brain electrical activity is nonsynchronous under normal conditions. In epileptic seizures, a large group of neurons begin firing in an abnormal, excessive, and synchronized manner, which results in a wave of depolarization known as a paroxysmal depolarizing shift (Somjen, 2004). Normally after an excitatory neuron fires it becomes more resistant to firing for a period of time, owing in part to the effect of inhibitory neurons, electrical changes within the excitatory neuron, and the negative effects of adenosine. However, in epilepsy the resistance of excitatory neurons to fire during this period is decreased, likely due to changes in ion channels or inhibitory neurons not functioning properly. This then results in a specific area from which seizures may develop, known as a "seizure focus".

Increased, abnormal neuron firing causes a wave of depolarization throughout the brain/neuronal tissue. At the level of single neurons, epileptiform activity consists of sustained neuronal depolarization resulting in a burst of action potentials, a plateau-like depolarization associated with completion of the action potential burst, and then a rapid repolarization followed by hyperpolarization. This sequence is also called paroxysmal depolarizing shift (PDS). The bursting activity resulting from the relatively prolonged depolarization of the neuronal membrane is due to influx of extracellular Ca2+, which leads to the opening of voltage-dependent Na+ channels, influx of Na+, and generation of repetitive action potentials. The subsequent hyperpolarizing afterpotential is mediated by iGABA receptors and Cl- influx, or by K+ efflux, depending on the cell type (Bromfield et al. 2006).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Paroxysmal depolarizing shifts can be measured in vitro using patch-clamp recording technique (Kapur 2009) or micro-electrode arrays (Novellino et al. 2011) to determine effects of chemicals on action potential patterns of neurons.

PDS can be detected in vivo using electroencephalography techniques (Niedermeyer and da Silva 2005).

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Most of the supporting evidence comes from studies on human and rodents. See the reviews of Bromfield (2006) and Lomen-Hoerth and Messing (2010) for examples.

References

List of the literature that was cited for this KE description. More help

Bromfield EB, Cavazos JE, Sirven JI. 2006. An Introduction to Epilepsy [Internet]. West Hartford (CT): American Epilepsy Society; Chapter 1, Basic Mechanisms Underlying Seizures and Epilepsy. Available from: http://www.ncbi.nlm.nih.gov/books/NBK2510/.

Kapur J. 2009. GABA | Pathophysiology of Status Epilepticus. Encyclopedia of Basic Epilepsy Research, pp 304-8.

Lomen-Hoerth C, Messing RO. 2010. Chapter 7: Nervous system disorders. Edited by Stephen J. McPhee, and Gary D. Hammer, Pathophysiology of disease: an introduction to clinical medicine (6th Edition). New York: McGraw-Hill Medical. ISBN 9780071621670.

Novellino A, Scelfo B, Palosaari T, Price A, Sobanski T, Shafer TJ, Johnstone AF, Gross GW, Gramowski A, Schroeder O, Jügelt K, Chiappalone M, Benfenati F, Martinoia S, Tedesco MT, Defranchi E, D'Angelo P, Whelan M. 2011. Development of micro-electrode array based tests for neurotoxicity: assessment of interlaboratory reproducibility with neuroactive chemicals. Front Neuroeng. 4:4.

Niedermeyer E, da Silva FL. 2005. Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins.

Somjen GG. 2004. Ions in the Brain Normal Function, Seizures, and Stroke. New York: Oxford University Press. p. 167.