This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 718

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Binding, Tubulin

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Binding, Tubulin
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Molecular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Cell term
eukaryotic cell

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
tubulin binding tubulin increased
tubulin complex disrupted

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Tubulin binding and aneuploidy MolecularInitiatingEvent Cataia Ives (send email) Open for citation & comment Under Review

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
mouse Mus musculus High NCBI
Homo sapiens Homo sapiens Moderate NCBI
rat Rattus norvegicus Moderate NCBI
Xenopus laevis Xenopus laevis High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
All life stages High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Mixed High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

The site of action is the tubulin in the cytoplasm. Tubulins represent a large superfamily, and several isotypes are described for both α and β tubulin in mammalian cells [Luduena, 2013]. At least six different isotypes of the α subunit are known, while eight isotypes are known for the β subunit. These subunits share a high degree of homology (90% similarity). In addition to α- and β-tubulin, other tubulin homologues have been identified (γ, δ and ε), but their roles in the life cycle of the cell are uncertain [Bhattacharya and Cabral, 2009]. All available isotypes are incorporated within microtubules, although with different tissue distributions in normal cells [Berrieman et al., 2004]. The currently known microtubule-disrupting agents bind to all isotypes, having only a slight preference for one over another [Miller et al., 2010].

Binding sites on the α/β-tubulin heterodimer: Conventionally, microtubule-interfering agents are categorized into two main groups: (1) microtubule destabilizers, including colchicine and a variety of vinca alkaloids; and (2) microtubule stabilizers, including taxanes and epothilones. Most agents interact with known binding pockets of α/β-tubulin; however, there are compounds that bind to tubulin on undefined sites. Three distinct sites are well characterized in the literature [Marchetti et al., 2016; Botta et al., 2009]: (1) the colchicine-binding domain at the interface between the α- and β-tubulin dimers; (2) the vinca domain surrounding the GTP binding site on β- and α-tubulin; and, (3) the taxane domain located on β-tubulin [Botta et al., 2009].

Colchicine binding domain on tubulin: The colchicine binding domain is a deep pocket located at the α/β interface of tubulin heterodimers. Crystal structures for tubulin and different ligands are available, although their resolution is not high [Lu et al., 2012; Massarotti et al., 2012]. Notwithstanding its deep location, significant conformational changes in the protein are necessary for accommodating the inhibitors. Both the A and C rings of colchicine are necessary for high affinity binding, while the B ring may only function as a linker between the other two. Three methoxy residues are present in the A ring and all of them are involved in the high affinity binding to tubulin. The C ring of colchicine interacts through van der Waals contacts with Valα181, Serα178, and Valβ315. The carbonyl group behaves as a hydrogen bond acceptor, interacting with Val181a. The A ring is buried in a hydrophobic pocket delimited by Lysβ352, Asnβ350, Leuβ378, Alaβ316, Leuβ255, Lysβ254, Alaβ250, and Leuβ242, and the methoxy group at position 3 is involved in a hydrogen bond interaction within the thiol group of Cysβ241 [Marchetti et al., 2016]. Different ligands may compete with colchicine for the same binding site, even in the absence of high structural correspondence [Lu et al., 2012].

There is no OECD guideline for measuring chemical binding to tubulin, however, binding of colchicine to tubulin is one of the most studied chemical interactions with biological materials and methodology for its measurement is well established and standardized [Hamel and Lin, 1981; Verdier-Pinard et al., 1998].

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Binding properties to tubulin are generally evaluated in vitro, typically on tubulin extracts derived from brain tissues [Miller and Wilson 2010]. To determine whether a compound can bind to tubulin, a competitive [3H]colchicine tubulin-binding assay is conducted in vitro to measure whether the binding of colchicine is inhibited by the presence of the test agent [Verdier-Pinard et al. 1998]. A reaction mixture containing tubulin, [3H]colchicine and a potential inhibitor is incubated and after the addition of the scintillation fluid, the radioactivity of [3H]colchicine-bound tubulin is measured using a scintillation counter. The reduction of [3H]colchicine-bound tubulin value is inversely proportional to the test agent binding affinity [Hamel and Lin 1981]. A reaction mixture with only tubulin and [3H]colchicine is generally used as an experimental control standard. The inhibition constant (Ki) of colchicine is 5.75 μM [Zavala et al. 1980] and the ability of new chemicals to interfere with colchicine binding to tubulin is benchmarked against this value.

 

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Chemical binding to tubulin has been measured in somatic and germ cells in a variety of species, from rodents in vivo to human cells in culture. Theoretically, chemical binding to tubulin can occur in any cell type in any organism.

References

List of the literature that was cited for this KE description. More help

Berrieman HK, Lind MJ, Cawkwell L. 2004. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol 5:158-164.

Bhattacharya R, Cabral F. 2009. Molecular basis for class V beta-tubulin effects on microtubule assembly and paclitaxel resistance. J Biol Chem 284:13023-13032.

Botta M, Forli S, Magnani M, Manetti F. 2009. Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents. In: Carlomagno T, editor. Tubulin-Binding Agents: Springer Berlin Heidelberg. p 279-328.

Clement MJ, Rathinasamy K, Adjadj E, Toma F, Curmi PA, Panda D. 2008. Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: evidence of distinct binding sites for these agents in tubulin. Biochemistry 47:13016-13025.

Cutts JH, Beer CT, Noble RL. 1960. Biological properties of Vincaleukoblastine, an alkaloid in Vinca rosea Linn, with reference to its antitumor action. Cancer Res 20:1023-1031.

D'Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 1994. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci USA 91:3964-3968.

Desbene S, Giorgi-Renault S. 2002. Drugs that inhibit tubulin polymerization: the particular case of podophyllotoxin and analogues. Curr Med Chem Anticancer Agents 2:71-90.

Engelborghs Y. 1998. General features of the recognition by tubulin of colchicine and related compounds. Eur Biophys J 27:437-445.

Garland DL. 1978. Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational change. Biochemistry 17:4266-4272.

Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M. 2005. Structural basis for the regulation of tubulin by vinblastine. Nature 435:519-522.

Hamel E, Lin CM. 1981. Stabilization of the colchicine-binding activity of tubulin by organic acids. Biochim Biophys Acta 675:226-231.

Himes RH. 1991. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol Ther 51:257-267.

Kingston DG. 2009. Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507-515.

Lambeir A, Engelborghs Y. 1981. A fluorescence stopped flow study of colchicine binding to tubulin. J Biol Chem 256:3279-3282.

Lu Y, Chen J, Xiao M, Li W, Miller DD. 2012. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 29:2943-2971.

Luduena RF. 2013. A hypothesis on the origin and evolution of tubulin. Int Rev Cell Mol Biol 302:41-185.

Marchetti A, Massarotti A, Yauk CL, Pacchierotti F, Russo A. Submitted. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring. Environ Mol Mutagen.

Massarotti A, Coluccia A, Silvestri R, Sorba G, Brancale A. 2012. The tubulin colchicine domain: a molecular modeling perspective. ChemMedChem 7:33-42.

Miller HP, Wilson L. 2010. Chapter 1 - Preparation of Microtubule Protein and Purified Tubulin from Bovine Brain by Cycles of Assembly and Disassembly and Phosphocellulose Chromatography. In: Leslie W, John JC, editors. Methods Cell Biol: Academic Press. p 2-15.

Miller LM, Xiao H, Burd B, Horwitz SB, Angeletti RH, Verdier-Pinard P. 2010. Chapter 7 - Methods in Tubulin Proteomics. In: Leslie W, John JC, editors. Methods Cell Biol: Academic Press. p 105-126.

Rai SS, Wolff J. 1996. Localization of the vinblastine-binding site on beta-tubulin. J Biol Chem 271:14707-14711.

Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. 2004. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198-202.

Stanton RA, Gernert KM, Nettles JH, Aneja R. 2011. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443-481.

Toso RJ, Jordan MA, Farrell KW, Matsumoto B, Wilson L. 1993. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32:1285-1293.

Warfield RK, Bouck GB. 1974. Microtubule-macrotubule transitions: intermediates after exposure to the mitotic inhibitor vinblastine. Science 186:1219-1221.

Weisenberg RC, Timasheff SN. 1970. Aggregation of microtubule subunit protein. Effects of divalent cations, colchicine and vinblastine. Biochemistry 9:4110-4116.

Wilson L, Jordan MA, Morse A, Margolis RL. 1982. Interaction of vinblastine with steady-state microtubules in vitro. J Mol Biol 159:125-149.

Xu K, Schwarz PM, Ludueña RF. 2002. Interaction of nocodazole with tubulin isotypes. Drug Dev Res 55:91-96.

Zavala F, Guenard D, Robin JP, Brown E. 1980. Structure--antitubulin activity relationship in steganacin congeners and analogues. Inhibition of tubulin polymerization in vitro by (+/-)-isodeoxypodophyllotoxin. J Med Chem 23:546-549.