To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:921

Event: 921

Key Event Title

The KE title should describe a discrete biological change that can be measured. It should generally define the biological object or process being measured and whether it is increased, decreased, or otherwise definably altered relative to a control state. For example “enzyme activity, decreased”, “hormone concentration, increased”, or “growth rate, decreased”, where the specific enzyme or hormone being measured is defined. More help

Occurrence, Hyperplasia of goblet cells

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. The short name should be less than 80 characters in length. More help
Goblet cell hyperplasia

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. Note, KEs should be defined within a particular level of biological organization. Only KERs should be used to transition from one level of organization to another. Selection of the level of biological organization defines which structured terms will be available to select when defining the Event Components (below). More help

Organ term

Further information on Event Components and Biological Context may be viewed on the attached pdf.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable. More help

Key Event Components

Further information on Event Components and Biological Context may be viewed on the attached pdf.Because one of the aims of the AOP-KB is to facilitate de facto construction of AOP networks through the use of shared KE and KER elements, authors are also asked to define their KEs using a set of structured ontology terms (Event Components). In the absence of structured terms, the same KE can readily be defined using a number of synonymous titles (read by a computer as character strings). In order to make these synonymous KEs more machine-readable, KEs should also be defined by one or more “event components” consisting of a biological process, object, and action with each term originating from one of 22 biological ontologies (Ives, et al., 2017; See List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling). The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signalling by that receptor).Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description. To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons. If a desired term does not exist, a new term request may be made via Term Requests. Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add. More help
Process Object Action
hyperplasia goblet cell occurrence

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Decreased lung function KeyEvent Cataia Ives (send email) Under development: Not open for comment. Do not cite Under Development

Stressors

This is a structured field used to identify specific agents (generally chemicals) that can trigger the KE. Stressors identified in this field will be linked to the KE in a machine-readable manner, such that, for example, a stressor search would identify this as an event the stressor can trigger. NOTE: intermediate or downstream KEs in one AOP may function as MIEs in other AOPs, meaning that stressor information may be added to the KE description, even if it is a downstream KE in the pathway currently under development.Information concerning the stressors that may trigger an MIE can be defined using a combination of structured and unstructured (free-text) fields. For example, structured fields may be used to indicate specific chemicals for which there is evidence of an interaction relevant to this MIE. By linking the KE description to a structured chemical name, it will be increasingly possible to link the MIE to other sources of chemical data and information, enhancing searchability and inter-operability among different data-sources and knowledgebases. The free-text section “Evidence for perturbation of this MIE by stressor” can be used both to identify the supporting evidence for specific stressors triggering the MIE as well as to define broad chemical categories or other properties that classify the stressors able to trigger the MIE for which specific structured terms may not exist. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected from an ontology. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens High NCBI
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
ferret Mustela putorius furo Low NCBI
guinea pig Cavia porcellus High NCBI

Life Stages

The structured ontology terms for life-stage are more comprehensive than those for taxa, but may still require further description/development and explanation in the free text section. More help
Life stage Evidence
Adult High

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Term Evidence
Mixed High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. For example, the biological state being measured could be the activity of an enzyme, the expression of a gene or abundance of an mRNA transcript, the concentration of a hormone or protein, neuronal activity, heart rate, etc. The biological compartment may be a particular cell type, tissue, organ, fluid (e.g., plasma, cerebrospinal fluid), etc. The role in the biology could describe the reaction that an enzyme catalyses and the role of that reaction within a given metabolic pathway; the protein that a gene or mRNA transcript codes for and the function of that protein; the function of a hormone in a given target tissue, physiological function of an organ, etc. Careful attention should be taken to avoid reference to other KEs, KERs or AOPs. Only describe this KE as a single isolated measurable event/state. This will ensure that the KE is modular and can be used by other AOPs, thereby facilitating construction of AOP networks. More help

Goblet cell hyperplasia refers to the increase in goblet cell numbers and is as common feature of airway epithelia in asthma and other respiratory diseases. It can arise from sustained proliferation of this cell population following airway injury by, for example, exposure to allergens, pathogens, cigarette smoke and other inhalation exposures (Miyabara et al., 1998; Nagao et al., 2003; Saetta et al., 2000; van Hove et al., 2009; Walter et al., 2002; Hao et al., 2014; Lukacs et al., 2010; Hao et al., 2013; Yageta et al., 2014; Nie et al., 2012; Hegab et al., 2007; Kim et al., 2016).

Following EGFR activation, classical downstream activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, also known as Raf/Ras/MAPK/ERK pathway, increases airway epithelial cell proliferation (Lemjabbar et al., 2003; Kim et al., 2005; Hackel et al., 1999) and facilitates epithelial wound repair (Burgel & Nadel, 2004; Van Winkle et al., 1997; Allahverdian et al., 2010). While there is evidence that increased goblet cell proliferation may be the underlying cause of goblet cell hyperplasia (GCH; Silva et al., 2012), the key players mediating an increase in airway goblet cell numbers following EGFR activation are still largely unexplored. Basal epithelial cells which exhibit stem cell-like properties have been postulated to function as a source of goblet cells in injured airways, utilizing cell fate pathways that favor secretory cells over other cell populations (Rock et al., 2009).  However, both in vitro studies and studies in mouse models of asthma, COPD, and viral infection indicate that transdifferentiation of ciliated or club cells into goblet cells, which is referred to as goblet cell metaplasia (GCM), more likely contributes to the expansion of this cell population in the airways (Tyner et al., 2006; Lumsden et al., 1984; Reader et al., 2003; Turner et al., 2011; Evans et al., 2004; Lamb et al., 1968; Shimizu et al., 1998). Furthermore, such increases in the number of goblet cells are suppressed when EGFR activity is inhibited (Tyner et al., 2006).

How It Is Measured or Detected

One of the primary considerations in evaluating AOPs is the relevance and reliability of the methods with which the KEs can be measured. The aim of this section of the KE description is not to provide detailed protocols, but rather to capture, in a sentence or two, per method, the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements. Methods that can be used to detect or measure the biological state represented in the KE should be briefly described and/or cited. These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA).Key considerations regarding scientific confidence in the measurement approach include whether the assay is fit for purpose, whether it provides a direct or indirect measure of the biological state in question, whether it is repeatable and reproducible, and the extent to which it is accepted in the scientific and/or regulatory community. Information can be obtained from the OECD Test Guidelines website and the EURL ECVAM Database Service on Alternative Methods to Animal Experimentation (DB-ALM). ?

Goblet cells are mucin-producing columnar epithelial cells, and their secretory granules can be identified easily by light or electron microscopy (Rogers, 1994). However, MUC5AC immunohistochemical staining is typically used to identify and enumerate this cell type in tissue sections, even though this is semi-quantitative at best. Alternatively, staining of tissue sections with Alcian blue (AB) or AB in combination with periodic acid–Schiff (PAS) can also be used to highlight and count mucus-containing goblet cells. In addition, the simultaneous detection and quantification of proliferation markers such as PCNA or Ki-67 may prove helpful in identifying proliferating goblet cells following airway injury.

In laboratory animals, GCH may be idenitfied by a pathologist as an increase in the number of goblet cells in an epithelium which normally contains some few goblet cells (Harkema and Hotchkiss, 1993). Similarly, an experienced pathologist may assign a score for the extent of GCH occurring in human airway epithelial tissues, and although no standard for this assessment exists, this appears to be a clinically accepted approach.

Domain of Applicability

This free text section should be used to elaborate on the scientific basis for the indicated domains of applicability and the WoE calls (if provided). While structured terms may be selected to define the taxonomic, life stage and sex applicability (see structured applicability terms, above) of the KE, the structured terms may not adequately reflect or capture the overall biological applicability domain (particularly with regard to taxa). Likewise, the structured terms do not provide an explanation or rationale for the selection. The free-text section on evidence for taxonomic, life stage, and sex applicability can be used to elaborate on why the specific structured terms were selected, and provide supporting references and background information.  More help

Goblet cell hyperplasia (GCH) was reported in respiratory epithelia of humans, mice and rats following various inhalation exposures (Saetta et al., 2000; Takeyama et al., 2008; Tesfaigzi et al., 2000; Werley et al., 2016). Although GCH is a common feature of adaptation to respiratory irritants and/or airway epithelial repair among these species, some species differences exist with respect to the sensitivity toward certain exposures (Wolf et al., 1995; NTP, 1994).

References

List of the literature that was cited for this KE description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide (https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf) (OECD, 2015). More help

Allahverdian, S., Wang, A., Singhera, G.K., Wong, B.W., and Dorscheid, D.R. (2010). Sialyl Lewis X modification of the epidermal growth factor receptor regulates receptor function during airway epithelial wound repair. Clin Exp Allergy 40, 607-618.

Burgel, P., and Nadel, J. (2004). Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax 59, 992-996.

Evans, C.M., Williams, O.W., Tuvim, M.J., Nigam, R., Mixides, G.P., Blackburn, M.R., DeMayo, F.J., Burns, A.R., Smith, C., Reynolds, S.D., et al. (2004). Mucin Is produced by Clara cells in the proximal airways of antigen-challenged mice. Am J Resp Cell Mol Biol 31, 382-394.

Hackel, P.O., Zwick, E., Prenzel, N., and Ullrich, A. (1999). Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11, 184-189.

Hao, Y., Kuang, Z., Jing, J., Miao, J., Mei, L.Y., Lee, R.J., Kim, S., Choe, S., Krause, D.C., and Lau, G.W. (2014). Mycoplasma pneumoniae modulates STAT3-STAT6/EGFR-FOXA2 signaling to induce overexpression of airway mucins. Infect Immun 82, 5246-5255.

Hao, Y., Kuang, Z., Xu, Y., Walling, B.E., and Lau, G.W. (2013). Pyocyanin-induced mucin production is associated with redox modification of FOXA2. Respir Res 14, 82-82.

Harkema, J.R., and Hotchkiss, J.A. (1993). Ozone- and endotoxin-induced mucous cell metaplasias in rat airway epithelium: Novel animal models to study toxicant-induced epithelial transformation in airways. Toxicol Lett 68, 251-263.

Hegab, A.E., Sakamoto, T., Nomura, A., Ishii, Y., Morishima, Y., Iizuka, T., Kiwamoto, T., Matsuno, Y., Homma, S., and Sekizawa, K. (2007). Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: The role of hCLCA1. Chest 131, 1149-1156.

Kim, S., Schein, A.J., and Nadel, J.A. (2005). E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC mucin expression in cultured human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 289, L1049-L1060.

Kim, B.-G., Lee, P.-H., Lee, S.-H., Kim, Y.-E., Shin, M.-Y., Kang, Y., Bae, S.-H., Kim, M.-J., Rhim, T., Park, C.-S., et al. (2016). Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model. Allergy Asthma Immunol Res 8, 246-256.

Lamb, D., and Reid, L. (1968). Mitotic rates, goblet cell increase and histochemical changes in mucus in rat bronchial epithelium during exposure to sulphur dioxide. J Pathol Bacteriol 96, 97-111.

Lemjabbar, H., Li, D., Gallup, M., Sidhu, S., Drori, E., and Basbaum, C. (2003). Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor alpha-converting enzyme and amphiregulin. J Biol Chem 278, 26202-26207.

Lukacs, N.W., Smit, J.J., Nunez, G., and Lindell, D.M. (2010). Respiratory Virus-induced TLR7 activation controls IL-17 associated Increase in mucus via IL-23 regulation: Respiratory virus induced immune environment relies on TLR7-mediated pathways to preserve a non-pathogenic response and regulates IL-17 production. J Immunol 185, 2231-2239.

Lumsden, A.B., McLean, A., and Lamb, D. (1984). Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax 39, 844-849.

Miyabara, Y., Ichinose, T., Takano, H., Lim, H.-B., and Sagai, M. (1998). Effects of diesel exhaust on allergic airway inflammation in mice. J Allergy Clin Immunol 102, 805-812.

Nagao, K., Tanaka, H., Komai, M., Masuda, T., Narumiya, S., and Nagai, H. (2003). Role of Prostaglandin I2 in Airway Remodeling Induced by Repeated Allergen Challenge in Mice. Am J Resp Cell Mol Biol 29, 314-320.

Nie, Y.-C., Wu, H., Li, P.-B., Luo, Y.-L., Zhang, C.-C., Shen, J.-G., and Su, W.-W. (2012). Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 25, 349-356.

NTP (1994). NTP Toxicology and Carcinogenesis Studies of Ozone (CAS No. 10028-15-6) and Ozone/NNK (CAS No. 10028-15-6/64091-91-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). National Toxicology Program technical report series 440, 1.

Reader, J.R., Tepper, J.S., Schelegle, E.S., Aldrich, M.C., Putney, L.F., Pfeiffer, J.W., and Hyde, D.M. (2003). Pathogenesis of mucous cell metaplasia in a murine asthma model. Am J Pathol 162, 2069-2078.

Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell, S.H., and Hogan, B.L. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. PNAS 106, 12771-12775.

Rogers, D. (1994). Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J 7, 1690-1706.

Saetta, M., Turato, G., Baraldo, S., Zanin, A., Braccioni, F., Mapp, C.E., Maestrelli, P., Cavallesco, G., Papi, A., and Fabri, L.M. (2000). Goblet Cell Hyperplasia and Epithelial Inflammation in Peripheral Airways of Smokers with Both Symptoms of Chronic Bronchitis and Chronic Airflow Limitation. Am J Resp Crit Care Med 161, 1016-1021.

Shimizu, T., Takahashi, Y., Kawaguchi, S., and Sakakura, Y. (1996). Hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium induced by endotoxin. Am J Resp Crit Care Med 153, 1412-1418.

Silva, M.A., and Bercik, P. (2012). Macrophages are related to goblet cell hyperplasia and induce MUC5B but not MUC5AC in human bronchus epithelial cells. Lab Invest 92, 937-948.

Takeyama, K., Tamaoki, J., Kondo, M., Isono, K., and Nagai, A. (2008). Role of epidermal growth factor receptor in maintaining airway goblet cell hyperplasia in rats sensitized to allergen. Clin Exp Allergy 38, 857-865.

Tesfaigzi, Y., Fischer, M.J., Martin, A.J., and Seagrave, J. (2000). Bcl-2 in LPS- and allergen-induced hyperplastic mucous cells in airway epithelia of Brown Norway rats. Am J Physiol Lung Cell Mol Physiol 279, L1210-L1217.

Turner, J., Roger, J., Fitau, J., Combe, D., Giddings, J., Heeke, G.V., and Jones, C.E. (2011). Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am J Resp Cell Mol Biol 44, 276-284.

Tyner, J.W., Kim, E.Y., Ide, K., Pelletier, M.R., Roswit, W.T., Morton, J.D., Battaile, J.T., Patel, A.C., Patterson, G.A., Castro, M., et al. (2006). Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest 116, 309-321.

Van Hove, C.L., Maes, T., Cataldo, D.D., Guéders, M.M., Palmans, E., Joos, G.F., and Tournoy, K.G. (2009). Comparison of acute inflammatory and chronic structural asthma-like responses between C57BL/6 and BALB/c mice. Int Arch Allergy Immunol 149, 195-207.

Van Winkle, L.S., Isaac, J.M., and Plopper, C.G. (1997). Distribution of epidermal growth factor receptor and ligands during bronchiolar epithelial repair from naphthalene-induced Clara cell injury in the mouse. Am J Pathol 151, 443.

Walter, M.J., Morton, J.D., Kajiwara, N., Agapov, E., and Holtzman, M.J. (2002). Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J Clin Invest 110, 165-175.

Werley, M.S., Kirkpatrick, D.J., Oldham, M.J., Jerome, A.M., Langston, T.B., Lilly, P.D., Smith, D.C., and McKinney, W.J. (2016). Toxicological assessment of a prototype e-cigaret device and three flavor formulations: a 90-day inhalation study in rats. Inhal Toxicol 28, 22-38.

Wolf, D., Morgan, K., Gross, E., Barrow, C., Moss, O., James, R., and Popp, J. (1995). Two-year inhalation exposure of female and male B6C3F1 mice and F344 rats to chlorine gas induces lesions confined to the nose. Toxicol Sci 24, 111-131.

Yageta, Y., Ishii, Y., Morishima, Y., Ano, S., Ohtsuka, S., Matsuyama, M., Takeuchi, K., Itoh, K., Yamamoto, M., and Hizawa, N. (2014). Carbocisteine reduces virus-induced pulmonary inflammation in mice exposed to cigarette smoke. Am J Resp Cell Mol Biol 50, 963-973.