To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1037

Relationship: 1037

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Inhibition, Deiodinase 1 leads to Decreased, Triiodothyronine (T3)

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Deiodinase 1 inhibition leading to increased mortality via reduced posterior swim bladder inflation adjacent Low Low Agnes Aggy (send email) Under Development: Contributions and Comments Welcome EAGMST Approved
Deiodinase 1 inhibition leading to increased mortality via reduced anterior swim bladder inflation adjacent Low Low Allie Always (send email) Under Development: Contributions and Comments Welcome EAGMST Approved

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
zebrafish Danio rerio Low NCBI
fathead minnow Pimephales promelas Low NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific Moderate

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

The two major thyroid hormones are thyroxine (T4) and the more biologically active triiodothyronine (T3), both iodinated derivatives of tyrosine. Active and inactive THs are tightly regulated by enzymes called iodothyronine deiodinases (DIO). The activation occurs via outer ring deiodination (ORD), i.e. removing iodine from the outer, phenolic ring of T4 to form T3, while inactivation occurs via inner ring deiodination (IRD), i.e. removing iodine from the inner tyrosol ring of T4 or T3.

Three types of iodothyronine deiodinases (DIO1-3) have been described in vertebrates that activate or inactivate THs and are therefore important mediators of TH action. All deiodinases are integral membrane proteins of the thioredoxin superfamily that contain selenocysteine in their catalytic centre. Type I deiodinase is capable of converting T4 into T3, as well as to convert rT3 to the inactive thyroid hormone 3,3’ T2, through outer ring deiodination. rT3, rather than T4, is the preferred substrate for DIO1. furthermore, DIO1 has a very high Km (µM range, compared to nM range for DIO2) (Darras and Van Herck, 2012). Type II deiodinase (DIO2) is only capable of ORD activity with T4 as a preferred substrate (i.e., activation of T4 tot T3). DIO3 can inner ring deiodinate T4 and T3 to the inactive forms of THs, reverse T3, (rT3) and 3,3’-T2 respectively. (Darras and Van Herck, 2012)

Because of the high Km and preference for rT3 as a substrate, the importance of DIO1 in activating T4 to T3 in a physiological situation is likely limited.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

Inhibition of DIO1 activity is widely accepted to directly decrease T3 levels, since the conversion of T4 to T3 is inhibited. The importance of DIO1 inhibition in altering serum T3 levels depends on the relative role of different deiodinases in regulating serum versus tissue T3 levels and in negative feedback within the HPT axis. Both aspects appear to differ to some extent among vertebrate taxa.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Inhibition of DIO1 activity is widely accepted to directly decrease T3 levels, since the conversion of T4 to T3 is inhibited.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Since in fish early life stages THs are typically measured on a whole body level, it is currently uncertain whether T3 level changes occur at the serum and/or tissue level. Pending more dedicated studies, whole body TH levels are considered a proxy for serum TH levels.

The importance of DIO1 inhibition in altering serum T3 levels depends on the relative role of different deiodinases in regulating serum versus tissue T3 levels and in negative feedback within the HPT axis. Both aspects appear to differ to some extent among vertebrate taxa, but the details are not understood yet.

Another uncertainty lies in the relative importance of the different T4 actvating iodothyronine deiodinases (DIO1, DIO2) in the conversion of T4 to T3. It has been previously suggested that DIO2 is the major contributor to TH activation in developing zebrafish embryos (Darras et al., 2015; Walpita et al., 2010). It has been shown that a morpholino knockdown targeting DIO1 mRNA alone did not affect embryonic development in zebrafish, while knockdown of DIO2 delayed progression of otic vesicle length, head-trunk angle and pigmentation index (Houbrechts et al., 2016; Walpita et al., 2010, 2009). DIO1 inhibition may only become essential in hypothyroidal circumstances, for example when DIO2 is inhibited or in case of iodine deficiency, in zebrafish (Walpita et al., 2010) and mice (Galton et al., 2009; Schneider et al., 2006).

In the study of Cavallin et al. (2017) fathead minnow larvae were exposed to IOP, a model iodothyronine deiodinase inhibitor that is assumed to inhibit all three deiodinase enzymes (DIO1,2,3). Transcriptional analysis showed that especially DIO2, but also DIO3 mRNA levels (in some treatments), were increased in 10 to 21 day old larvae exposed to IOP as of the age of 6 days. This suggests that IOP effectively inhibited DIO2 and DIO3 in the larvae and that mRNA levels increased as a compensatory response. The authors also observed pronounced decreases of whole body T3 concentrations and increases of whole body T4 concentrations. It is not clear whether inhibition of DIO1 also played a role in the decrease of T3 levels.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Thyroid hormone levels are regulated via negative feedback, influencing this KER. Additionally, deiodinases regulate the activity of thryoid hormones, not only in serum and target organs, but also in the thryoid gland. Deiodinases themselves are known to be involved in the negative feedback system that results in increased TSH levels when the levels of T4 (and also T3) in serum are low (Schneider et al., 2001), resulting in an even more complicated impact on this KER. Increased TSH levels then stimulate increased T4 release from the thyroid gland, resulting in a compensatory increase of serum T4 levels. In DIO2 knockout mice it seemed that the negative feedback system was blocked resulting in increased levels of T4 and TSH and in normal rather than decreased T3 levels compared to WT. By inhibiting DIO1 using a PTU exposure, Schneider et al. (2001) showed that DIO2 played a role in the increased TSH levels in response to T3 or T4 injection.

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Taxonomic: Deiodinases are important for the activation of T4 to T3 across vertebrates. Therefore, this KER is plausibly applicable across vertebrates. There appear to be differences among vertebrate classes relative to the role of the different deiodinase isoforms in regulating thyroid hormone levels. It is generally assumed that deiodinase 1 in liver is the main supplier of T3 to circulation in mammals (Leonard et al., 1986), and the same appears to be true for birds (Freeman et al., 1991), while DIO2 is assumed to regulate intracellular concentrations of T3. In contrast to the general assumptions however, Maia et al. (2005) determined that in a normal physiological situation in humans the contribution of DIO2 to plasma T3 levels is twice that of DIO1. By contrast, DIO1 function in teleostean and amphibian T3 plasma regulation is less clear (Finnson et al. 1999, Kuiper et al. 2006). The presence of DIO1 in the liver of teleosts has been a controversial issue, and both the high level of DIO2 activity and its expression in the liver of teleosts are unique among vertebrates (Orozco and Valverde, 2005). These differences make it difficult to exactly evaluate the importance of DIO1 in regulating serum/tissue T3 levels across vertebrates. Mol et al. (1998) concluded that deiodinases in teleosts were more similar to mammalian deiodinases than had been generally accepted, based on the similarities in susceptibility to inhibition and the agreement of the Km values.

Life stage: Deiodinases are important for the activation of T4 to T3 across all life stages.

Sex: The KE is plausibly applicable to both sexes. Thyroid hormones are essential in both sexes and the components of the HPT-axis are identical in both sexes. There can however be sex-dependent differences in the sensitivity to the disruption of thyroid hormone levels and the magnitude of the response. In humans, females appear more susceptible to hypothyroidism compared to males when exposed to certain halogenated chemicals (Hernandez‐Mariano et al., 2017; Webster et al., 2014). In adult zebrafish, Liu et al. (2019) showed sex-dependent changes in thyroid hormone levels and mRNA expression of regulatory genes including corticotropin releasing hormone (crh), thyroid stimulating hormone (tsh) and deiodinase 2 after exposure to organophosphate flame retardants. The underlying mechanism of any sex-related differences remains unclear.

References

List of the literature that was cited for this KER description. More help

Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.

Darras, V.M., Van Herck, S.L.J., 2012. Iodothyronine deiodinase structure and function: from ascidians to humans. Journal of Endocrinology 215, 189-206.

Finnson, K.W., McLeese, J.M., Eales, J.G., 1999. Deiodination and deconjugation of thyroid hormone conjugates and type I deiodination in liver of rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology 115, 387-397.

Hernandez-Mariano JA, Torres-Sanchez L, Bassol-Mayagoitia S, Escamilla-Nunez M, Cebrian ME, Villeda-Gutierrez EA, Lopez-Rodriguez G, Felix-Arellano EE, Blanco-Munoz J. 2017. Effect of exposure to p,p '-dde during the first half of pregnancy in the maternal thyroid profile of female residents in a mexican floriculture area. Environmental Research. 156:597-604.

Kuiper, G., Klootwijk, W., Dubois, G.M., Destree, O., Darras, V.M., Van der Geyten, S., Demeneix, B., Visser, T.J., 2006. Characterization of recombinant Xenopus laevis type I iodothyronine deiodinase: substitution of a proline residue in the catalytic center by serine (Pro132Ser) restores sensitivity to 6-propyl-2-thiouracil. Endocrinology 147, 3519-3529.

Liu XS, Cai Y, Wang Y, Xu SH, Ji K, Choi K. 2019. Effects of tris(1,3-dichloro-2-propyl) phosphate (tdcpp) and triphenyl phosphate (tpp) on sex-dependent alterations of thyroid hormones in adult zebrafish. Ecotoxicology and Environmental Safety. 170:25-32.

Mol, K.A., Van der Geyten, S., Burel, C., Kuhn, E.R., Boujard, T., Darras, V.M., 1998. Comparative study of iodothyronine outer ring and inner ring deiodinase activities in five teleostean fishes. Fish Physiology and Biochemistry 18, 253-266.

Schneider, M.J., Fiering, S.N., Pallud, S.E., Parlow, A.F., St Germain, D.L., Galton, V.A., 2001. Targeted disruption of the type 2 selenodeiodinase gene (D102) results in a phenotype of pituitary resistance to T-4. Molecular Endocrinology 15, 2137-2148.

Stinckens, E., Vergauwen, L., Ankley, G.T., Blust, R., Darras, V.M., Villeneuve, D.L., Witters, H., Volz, D.C., Knapen, D., 2018. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology 200, 1-12.

Stinckens, E., Vergauwen, L., Blackwell, B.R., Anldey, G.T., Villeneuve, D.L., Knapen, D., 2020. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. Environmental Science & Technology 54, 6213-6223.

Wang, J.X., Shi, G.H., Yao, J.Z., Sheng, N., Cui, R.N., Su, Z.B., Guo, Y., Dai, J.Y., 2020. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environment International 134.

Webster GM, Venners SA, Mattman A, Martin JW. 2014. Associations between perfluoroalkyl acids (pfass) and maternal thyroid hormones in early pregnancy: A population-based cohort study. Environmental Research. 133:338-347.