To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1037

Relationship: 1037

Title

The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Inhibition, Deiodinase 1 leads to Decreased, Triiodothyronine (T3) in serum

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Deiodinase 1 inhibition leading to increased mortality via reduced posterior swim bladder inflation adjacent Low Low Agnes Aggy (send email) Open for adoption EAGMST Under Review
Deiodinase 1 inhibition leading to increased mortality via reduced anterior swim bladder inflation adjacent Low Low Allie Always (send email) Open for adoption EAGMST Under Review

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help
Term Scientific Term Evidence Link
zebrafish Danio rerio Low NCBI
fathead minnow Pimephales promelas Low NCBI

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help
Sex Evidence
Unspecific High

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help
Term Evidence
All life stages High

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

The two major thyroid hormones are thyroxine (T4) and the more biologically active triiodothyronine (T3), both iodinated derivatives of tyrosine. Active and inactive THs are tightly regulated by enzymes called iodothyronine deiodinases (DIO). The activation occurs via outer ring deiodination (ORD), i.e. removing iodine from the outer, phenolic ring of T4 to form T3, while inactivation occurs via inner ring deiodination (IRD), i.e. removing iodine from the inner tyrosol ring of T4 or T3.

Three types of iodothyronine deiodinases (DIO1-3) have been described in vertebrates that activate or inactivate THs and are therefore important mediators of TH action. All deiodinases are integral membrane proteins of the thioredoxin superfamily that contain selenocysteine in their catalytic centre. Type I deiodinase is capable of converting T4 into T3, as well as to convert rT3 to the inactive thyroid hormone 3,3’ T2, through outer ring deiodination. rT3, rather than T4, is the preferred substrate for DIO1. furthermore, DIO1 has a very high Km (µM range, compared to nM range for DIO2) (Darras and Van Herck, 2012). Type II deiodinase (DIO2) is only capable of ORD activity with T4 as a preferred substrate (i.e., activation of T4 tot T3). DIO3 can inner ring deiodinate T4 and T3 to the inactive forms of THs, reverse T3, (rT3) and 3,3’-T2 respectively. (Darras and Van Herck, 2012)

Because of the high Km and preference for rT3 as a substrate, the importance of DIO1 in activating T4 to T3 in a physiological situation is likely limited.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help

Inhibition of DIO1 activity is widely accepted to directly decrease T3 levels, since the conversion of T4 to T3 is inhibited. The importance of DIO1 inhibition in altering serum T3 levels depends on the relative role of different deiodinases in regulating serum versus tissue T3 levels and in negative feedback within the HPT axis. Both aspects appear to differ to some extent among vertebrate taxa.

Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

Inhibition of DIO1 activity is widely accepted to directly decrease T3 levels, since the conversion of T4 to T3 is inhibited.

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

Since in fish early life stages THs are typically measured on a whole body level, it is currently uncertain whether T3 level changes occur at the serum and/or tissue level. Pending more dedicated studies, whole body TH levels are considered a proxy for serum TH levels.

The importance of DIO1 inhibition in altering serum T3 levels depends on the relative role of different deiodinases in regulating serum versus tissue T3 levels and in negative feedback within the HPT axis. Both aspects appear to differ to some extent among vertebrate taxa, but the details are not understood yet.

Another uncertainty lies in the relative importance of the different T4 actvating iodothyronine deiodinases (DIO1, DIO2) in the conversion of T4 to T3. It has been previously suggested that DIO2 is the major contributor to TH activation in developing zebrafish embryos (Darras et al., 2015; Walpita et al., 2010). It has been shown that a morpholino knockdown targeting DIO1 mRNA alone did not affect embryonic development in zebrafish, while knockdown of DIO2 delayed progression of otic vesicle length, head-trunk angle and pigmentation index (Houbrechts et al., 2016; Walpita et al., 2010, 2009). DIO1 inhibition may only become essential in hypothyroidal circumstances, for example when DIO2 is inhibited or in case of iodine deficiency, in zebrafish (Walpita et al., 2010) and mice (Galton et al., 2009; Schneider et al., 2006).

In the study of Cavallin et al. (2017) fathead minnow larvae were exposed to IOP, a model iodothyronine deiodinase inhibitor that is assumed to inhibit all three deiodinase enzymes (DIO1,2,3). Transcriptional analysis showed that especially DIO2, but also DIO3 mRNA levels (in some treatments), were increased in 10 to 21 day old larvae exposed to IOP as of the age of 6 days. This suggests that IOP effectively inhibited DIO2 and DIO3 in the larvae and that mRNA levels increased as a compensatory response. The authors also observed pronounced decreases of whole body T3 concentrations and increases of whole body T4 concentrations. It is not clear whether inhibition of DIO1 also played a role in the decrease of T3 levels.

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
Time-scale
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Thyroid hormone levels are regulated via negative feedback, influencing this KER. Additionally, deiodinases regulate the activity of thryoid hormones, not only in serum and target organs, but also in the thryoid gland. Deiodinases themselves are known to be involved in the negative feedback system that results in increased TSH levels when the levels of T4 (and also T3) in serum are low (Schneider et al., 2001), resulting in an even more complicated impact on this KER. Increased TSH levels then stimulate increased T4 release from the thyroid gland, resulting in a compensatory increase of serum T4 levels. In DIO2 knockout mice it seemed that the negative feedback system was blocked resulting in increased levels of T4 and TSH and in normal rather than decreased T3 levels compared to WT. By inhibiting DIO1 using a PTU exposure, Schneider et al. (2001) showed that DIO2 played a role in the increased TSH levels in response to T3 or T4 injection.

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

Taxonomic: It is generally assumed that deiodinase 1 in liver is the main supplier of T3 to circulation in mammals (Leonard et al., 1986), and the same appears to be true for birds (Freeman et al., 1991), while DIO2 is assumed to regulate intracellular concentrations of T3. In contrast to the general assumptions however, Maia et al. (2005) determined that in a normal physiological situation in humans the contribution of DIO2 to plasma T3 levels is twice that of DIO1. By contrast, DIO1 function in teleostean and amphibian T3 plasma regulation is less clear (Finnson et al. 1999, Kuiper et al. 2006). The presence of DIO1 in the liver of teleosts has been a controversial issue, and both the high level of DIO2 activity and its expression in the liver of teleosts are unique among vertebrates (Orozco and Valverde, 2005). These differences make it difficult to exactly evaluate the importance of DIO1 in regulating serum/tissue T3 levels across vertebrates. Mol et al. (1998) concluded that deiodinases in teleosts were more similar to mammalian deiodinases than had been generally accepted, based on the similarities in susceptibility to inhibition and the agreement of the Km values.

Life stage and sex: Deiodinases are important for the activation of T4 to T3 across all life stages and sexes.

References

List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.

Darras, V.M., Van Herck, S.L.J., 2012. Iodothyronine deiodinase structure and function: from ascidians to humans. Journal of Endocrinology 215, 189-206.

Mol, K.A., Van der Geyten, S., Burel, C., Kuhn, E.R., Boujard, T., Darras, V.M., 1998. Comparative study of iodothyronine outer ring and inner ring deiodinase activities in five teleostean fishes. Fish Physiology and Biochemistry 18, 253-266.

Finnson, K.W., McLeese, J.M., Eales, J.G., 1999. Deiodination and deconjugation of thyroid hormone conjugates and type I deiodination in liver of rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology 115, 387-397.

Kuiper, G., Klootwijk, W., Dubois, G.M., Destree, O., Darras, V.M., Van der Geyten, S., Demeneix, B., Visser, T.J., 2006. Characterization of recombinant Xenopus laevis type I iodothyronine deiodinase: substitution of a proline residue in the catalytic center by serine (Pro132Ser) restores sensitivity to 6-propyl-2-thiouracil. Endocrinology 147, 3519-3529.

Stinckens, E., Vergauwen, L., Ankley, G.T., Blust, R., Darras, V.M., Villeneuve, D.L., Witters, H., Volz, D.C., Knapen, D., 2018. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology 200, 1-12.

Stinckens, E., Vergauwen, L., Blackwell, B.R., Anldey, G.T., Villeneuve, D.L., Knapen, D., 2020. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. Environmental Science & Technology 54, 6213-6223.

Schneider, M.J., Fiering, S.N., Pallud, S.E., Parlow, A.F., St Germain, D.L., Galton, V.A., 2001. Targeted disruption of the type 2 selenodeiodinase gene (D102) results in a phenotype of pituitary resistance to T-4. Molecular Endocrinology 15, 2137-2148.

Wang, J.X., Shi, G.H., Yao, J.Z., Sheng, N., Cui, R.N., Su, Z.B., Guo, Y., Dai, J.Y., 2020. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environment International 134.