This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 1229
Title
Activation, PPARα leads to Increase, Phenotypic enzyme activity
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
PPARα activation leading to hepatocellular adenomas and carcinomas in rodents | adjacent | High | High | Cataia Ives (send email) | Under development: Not open for comment. Do not cite | Under Development |
Taxonomic Applicability
Sex Applicability
Sex | Evidence |
---|---|
Mixed | High |
Life Stage Applicability
Term | Evidence |
---|---|
All life stages | High |
Key Event Relationship Description
Activation of the PPARα receptor leads to a coordinated gene expression program that produces lipid metabolizing enzymes and proteins associated with control of the cell cycle.
Evidence Collection Strategy
Evidence Supporting this KER
Neither peroxisome proliferation nor increased enzyme activity is observed in PPARα-null mice. (Belury et al. 1998; Peters et al. 1997)
Biological Plausibility
Similar to other nuclear receptors such as the aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR), PPARα induces a coordinated gene expression program (Corton et al. 2014; Elcombe et al. 2014; Budinsky et al. 2014).
Empirical Evidence
Alteration of genes/proteins involved in cell growth by PPARα activators was not observed in PPARα-null mice (Anderson et al. 2004; Belury et al. 1998; Corton et al. 2004, 2014; Cunningham et al. 2010; Fitzgerald et al. 1981; Hartig et al. 1982; NTP, 2007)
Uncertainties and Inconsistencies
Vanishingly few, if any.
Known modulating factors
Modulating factors include NF-kB activation, cytokines, oxidative stress, and the role of microRNAs.
Quantitative Understanding of the Linkage
The activities for acyl coenzyme A oxidase for the three stressors considered on the main page of this AOP (AOP 37) were plotted and fit to a hockey stick dose-response model (Lutz & Lutz, 2009) and shown below.
The central value for the threshold MIE level was 14.15 MIE units with confidence limits of 3.04 to 19.07.
Response-response Relationship
The enzyme response does not occur until at least 14 MIE units and then rises with a slope of 0.72 per MIE unit.
Time-scale
The time scale of both the MIE and the enzyme response is 1 week.
Known Feedforward/Feedback loops influencing this KER
Increased expression of ACO and associated oxidative stress activated NF-kB
Domain of Applicability
The domain of applicability is similar to that for the overall MIE.
References
Anderson, S. P., Dunn, C., Laughter, A., Yoon, L., Swanson, C., Stulnig, T. M., Steffensen, K. R., Chandraratna, R. A., Gustafsson, J. A., & Corton, J. C. (2004). Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor alpha, retinoid X receptor, and liver X receptor in mouse liver. Mol Pharmacol, 66(6), 1440-1452. https://doi.org/10.1124/mol.104.005496
Belury, M. A., Moya-Camarena, S. Y., Sun, H., Snyder, E., Davis, J. W., Cunningham, M. L., & Vanden Heuvel, J. P. (1998). Comparison of dose-response relationships for induction of lipid metabolizing and growth regulatory genes by peroxisome proliferators in rat liver. Toxicol Appl Pharmacol, 151(2), 254-261. https://doi.org/10.1006/taap.1998.8443
Budinsky, R. A., Schrenk, D., Simon, T., Van den Berg, M., Reichard, J. F., Silkworth, J. B., Aylward, L. L., Brix, A., Gasiewicz, T., Kaminski, N., Perdew, G., Starr, T. B., Walker, N. J., & Rowlands, J. C. (2014). Mode of action and dose-response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol, 44(1), 83-119. https://doi.org/10.3109/10408444.2013.835787
Corton, J. C., Apte, U., Anderson, S. P., Limaye, P., Yoon, L., Latendresse, J., Dunn, C., Everitt, J. I., Voss, K. A., Swanson, C., Kimbrough, C., Wong, J. S., Gill, S. S., Chandraratna, R. A., Kwak, M. K., Kensler, T. W., Stulnig, T. M., Steffensen, K. R., Gustafsson, J. A., . . . Mehendale, H. M. (2004). Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem, 279(44), 46204-46212. https://doi.org/10.1074/jbc.M406739200
Corton, J. C., Cunningham, M. L., Hummer, T. B., Lau, C, Meek, B, Peters, JM, Popp, JA, Rhomberg, L, Seed, J., & Klaunig, J. E. (2014). Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPARα) as a case study. Crit Rev Toxicol, 44(1), 1-49. https://doi.org/10.3109/10408444.2013.835784
Elcombe, C. R., Elcombe, B. M., Foster, J. R., Chang, S. C., Ehresman, D. J., & Butenhoff, J. L. (2012). Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Toxicology, 293(1-3), 16-29. https://doi.org/10.1016/j.tox.2011.12.014
Cunningham, M. L., Collins, B. J., Hejtmancik, M. R., Herbert, R. A., Travlos, G. S., Vallant, M. K., & Stout, M. D. (2010). Effects of the PPARα Agonist and Widely Used Antihyperlipidemic Drug Gemfibrozil on Hepatic Toxicity and Lipid Metabolism. PPAR Res, 2010. https://doi.org/10.1155/2010/681963
Fitzgerald, J. E., Sanyer, J. L., Schardein, J. L., Lake, R. S., McGuire, E. J., & de la Iglesia, F. A. (1981). Carcinogen bioassay and mutagenicity studies with the hypolipidemic agent gemfibrozil. J Natl Cancer Inst, 67(5), 1105-1116. https://pubmed.ncbi.nlm.nih.gov/7029098
Hartig, F., Stegmeier, K., Hebold, G., Özel, M., & Fahimi, H. D. (1982). Study of liver enzymes: peroxisome proliferation and tumor rates in rats at the end of carcinogenicity studies with bezafibrate and clofibrate. Annals of the New York Academy of Sciences, 386(1), 464-467. https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1982.tb21453.x
Lutz, W. K., & Lutz, R. W. (2009). Statistical model to estimate a threshold dose and its confidence limits for the analysis of sublinear dose-response relationships, exemplified for mutagenicity data. Mutat Res, 678(2), 118-122. https://doi.org/10.1016/j.mrgentox.2009.05.010
NTP (2007). Toxicity studies of WY-14,643 (CAS No. 50892-23-4) administered in feed to male Sprague-Dawley rats, B6C3F1 mice, and Syrian hamsters. Toxic Rep Ser, 62), 1-136. https://pubmed.ncbi.nlm.nih.gov/24743700
Peters, J. M., Cattley, R. C., & Gonzalez, F. J. (1997). Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis, 18(11), 2029-2033. https://doi.org/10.1093/carcin/18.11.2029