This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 1686
Title
Glutamate dyshomeostasis leads to Cell injury/death
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
Binding of electrophilic chemicals to SH(thiol)-group of proteins and /or to seleno-proteins involved in protection against oxidative stress during brain development leads to impairment of learning and memory | adjacent | High | Moderate | Brendan Ferreri-Hanberry (send email) | Open for citation & comment | WPHA/WNT Endorsed |
Taxonomic Applicability
Sex Applicability
Life Stage Applicability
Term | Evidence |
---|---|
All life stages | High |
Key Event Relationship Description
Glutamate is the major excitatory neurotransmitter in the mammalian CNS, where it plays key roles in development, learning, memory and response to injury. However, glutamate at high concentrations at the synaptic cleft acts as a toxin, inducing neuronal injury and death (Meldrum, 2000; Ozawa et al., 1998). Glutamate-mediated neurotoxicity has been dubbed as “excitotoxicity”, referring to the consequence of the overactivation of the N-methyl D-aspartate (NMDA)–type glutamate receptors (cf AOP 48), leading to increased Na+ and Ca2+ influx into neurons (Choi, 1992; Pivovarova and Andrews, 2010). Increased intracellular Ca2+ levels are associated with the generation of oxidative stress and neurotoxicity (Lafon-Cazal et al., 1993). Accordingly, the control of extracellular levels of glutamate dictates its physiological/pathological actions and this equilibrium is maintained primarily by the action of several glutamate transporters (such as GLAST, GLT1, and EAAC1) located on astrocytic cell membranes, which remove the excitatory neurotransmitter from the synaptic cleft, keeping its extracellular concentrations below toxic levels (Anderson and Swanson, 2000; Maragakis and Rothstein, 2001; Szydlowska and Tymianski, 2010).
In addition to synaptic transmission, physiological stimulation of glutamate receptors can mediate trophic effects and promote neuronal plasticity. During development, NMDA receptors initiate a cascade of signal transduction events and gene expression changes primarily involving Ca2+-mediated signaling, induced by activation of either Ca2+- permeable receptor channels or voltage-sensitive Ca2+ channels. The consecutive activation of major protein kinase signaling pathways, such as Ras-MAPK/ERK and PI3-K-Akt, contributes to regulation of gene expression through the activation of key transcription factors, such as CREB, SRF, MEF-2, NF-kappaB. Metabotropic glutamate receptors can also engage these signaling pathways, in part by transactivating receptor tyrosine kinases. Indirect effects of glutamate receptor stimulation are due to the release of neurotrophic factors, such as brain derived neurotrophic factor through glutamate-induced release of trophic factors from glia. The trophic effect of glutamate receptor activation is developmental stage-dependent and may play an important role in determining the selective survival of neurons that made proper connections. During this sensitive developmental period, interference with glutamate receptor function may lead to widespread neuronal loss (Balazs, 2006).
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
Glutamate dyshomeostasis and in particular excess of glutamate in the synaptic cleft will lead to overactivation of ionotropic glutamate receptors and cause cell injury/death, as described in AOP 48. The excess of glutamate can result from decreased uptake in astrocytes (Aschner et al., 2000; Brookes and Kristt, 1989), or neurons (Moretto et al., 2005; Porciuncula et al., 2003). But also from the increased release (Reynolds and Racz, 1987). This neurotoxic cascade involves calcium overload and ROS production leading to oxidative stress (Ceccatelli et al., 2010; Lafon-Cazal, 1993; Meldrum, 2000; Ozawa, 1998). Chemicals binding to sulfhydryl (SH)-/seleno-proteins cause a direct oxidative stress by perturbing mitochondrial respiratory chain proteins and by decreasing anti-oxidant defense mechanism (see KER : MIE to KEdown oxidative stress) and an indirect oxidative stress via perturbation of glutamate homeostasis/excitotoxicity. Thus, there may be some redundancy in the empirical support between this KER and the KER linking KEup oxidative stress and KEdown cell injury/death.
Glutamate has been shown to regulate BDNF production (Tao et al., 2002). Accordingly, glutamate may also indirectly contribute to cell injury/death by inducing modifications in the brain levels of trophic factors, since it is known that changes in trophic support can lead to cell injury/death, as well as to perturbation in the physiological establishment of neuronal network (Zhao et al., 2017).
Empirical Evidence
Glutamate dyshomeostasis |
KEdown Cell injury/death |
species; developmental stage of exposure to stressor |
Stressor |
Dose or conc. Duration |
Protective/ aggravating evidence |
Reference |
Dose-dependent increase in glutamate content in cerebral cortex (+ 60% at 12 µmol kg-1) |
Increased apoptosis rate measured by flow cytometry (+ 1100% at 12 µmol kg-1) |
Rat adult exposure |
MeHgCl |
4 µmol kg-1 12 µmol kg-1 i.p injection 5 injections per week during 4 weeks |
Pretreatment with dextro-methorphan (low-affinity, noncompetitive NMDAR antagonist) partially decreased Glu content and apoptosis induced by MeHgCl |
(Feng et al., 2014) |
Dose-dependent increase in glutamate content in cerebral cortex (+ 22% at 12 µmol kg-1) |
Increased apoptosis rate measured by flow cytometry (+ 850% at 12 µmol kg-1) |
Rat adult exposure |
MeHgCl |
4 µmol kg-1 12 µmol kg-1 i.p injection 5 injections per week during 4 weeks |
Pretreatment with memantine (low-affinity, noncompetitive NMDAR antagonist) partially decreased Glu content and apoptosis induced by MeHgCl |
(Liu et al., 2013) |
Increase in glutamate content in cerebral cortex (1.12 fold at 12 µmol kg-1) |
Increased apoptosis rate measured by flow cytometry (+ 630% at 12 µmol kg-1) |
Rat adult exposure |
MeHgCl |
4 µmol kg-1 12 µmol kg-1 i.p injection 5 injections per week during 4 weeks |
Pretreatment with MK801 (noncompetitive NMDAR antagonist) partially decreased apoptosis induced by MeHgCl |
(Xu et al., 2012) |
Decreased glutamine uptake |
Reduction in inner mitochondrial membrane potential |
Rat astrocyte cultures |
MeHg |
1, 5, 10 µM 1 and 5 min |
(Yin et al., 2007) |
|
Changes in intracellular glutamate concentration |
Cell death measured by MTT reduction and LDH release |
Mouse astrocytes, neurons in mono- or co-cultures |
MeHg |
1-50 µM 24h |
(Morken et al., 2005) |
|
Concentration-dependent inhibition of glutamate uptake and stimulation of glutamate release |
Cell death measured by MTT reduction |
Mouse cerebellar granule cells in culture |
HgCl2 MeHgCl |
10-7-10-4 M 10 min |
(Fonfria et al., 2005) |
|
Dose-dependent decreased cortical glutamate concentration |
Dose-dependent abnormal neuronal morphology |
Rat Young (3-4 weeks) |
Acrylamide |
5, 15, 30 mg kg-1 5 injections per week during 4 weeks gavage |
(Tian et al., 2015) |
Uncertainties and Inconsistencies
No uncertainty or inconsistency reported yet.
Known modulating factors
Quantitative Understanding of the Linkage
See table of empirical evidence.
Response-response Relationship
Time-scale
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
Support for the link between glutamate dyshomeostasis and cell injury /death can be found in rats, and mouse. However, as the neurotransmitter glutamate is already found in insects, it is plausible that this KER is valid throughout taxa (Harris et al., 2014).
References
Albrecht, J., Talbot, M., Kimelberg, H.K., Aschner, M. (1993) The role of sulfhydryl groups and calcium in the mercuric chloride-induced inhibition of glutamate uptake in rat primary astrocyte cultures. Brain Res 607, 249-254.
Anderson, C.M., Swanson, R.A. (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1-14.
Aschner, M., Yao, C.P., Allen, J.W., Tan, K.H. (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem Int 37, 199-206.
Balazs, R. (2006) Trophic effect of glutamate. Curr Top Med Chem 6, 961-968.
Brookes, N., Kristt, D.A. (1989) Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem 53, 1228-1237.
Ceccatelli, S., Dare, E., Moors, M. (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188, 301-308.
Choi, D.W. (1992) Excitotoxic cell death. J Neurobiol 23, 1261-1276.
Feng, S., Xu, Z., Liu, W., Li, Y., Deng, Y., Xu, B. (2014) Preventive effects of dextromethorphan on methylmercury-induced glutamate dyshomeostasis and oxidative damage in rat cerebral cortex. Biol Trace Elem Res 159, 332-345.
Fonfria, E., Vilaro, M.T., Babot, Z., Rodriguez-Farre, E., Sunol, C. (2005) Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells. J Neurosci Res 79, 545-553.
Harris, K.D., Weiss, M., Zahavi, A. (2014) Why are neurotransmitters neurotoxic? An evolutionary perspective. F1000Res 3, 179.
Juarez, B.I., Martinez, M.L., Montante, M., Dufour, L., Garcia, E., Jimenez-Capdeville, M.E. (2002) Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicol Teratol 24, 767-771.
Lafon-Cazal, M., Pietri, S., Culcasi, M., Bockaert, J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535-537.
Liu, W., Xu, Z., Deng, Y., Xu, B., Wei, Y., Yang, T. (2013) Protective effects of memantine against methylmercury-induced glutamate dyshomeostasis and oxidative stress in rat cerebral cortex. Neurotox Res 24, 320-337.
LoPachin, R.M., Schwarcz, A.I., Gaughan, C.L., Mansukhani, S., Das, S. (2004) In vivo and in vitro effects of acrylamide on synaptosomal neurotransmitter uptake and release. Neurotoxicology 25, 349-363.
Maragakis, N.J., Rothstein, J.D. (2001) Glutamate transporters in neurologic disease. Arch Neurol 58, 365-370.
Meldrum, B.S. (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130, 1007S-1015S.
Moretto, M.B., Funchal, C., Santos, A.Q., Gottfried, C., Boff, B., Zeni, G., Pureur, R.P., Souza, D.O., Wofchuk, S., Rocha, J.B. (2005) Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology 214, 57-66.
Morken, T.S., Sonnewald, U., Aschner, M., Syversen, T. (2005) Effects of methylmercury on primary brain cells in mono- and co-culture. Toxicol Sci 87, 169-175.
Ozawa, S., Kamiya, H., Tsuzuki, K. (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54, 581-618.
Pivovarova, N.B., Andrews, S.B. (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277, 3622-3636.
Porciuncula, L.O., Rocha, J.B., Tavares, R.G., Ghisleni, G., Reis, M., Souza, D.O. (2003) Methylmercury inhibits glutamate uptake by synaptic vesicles from rat brain. Neuroreport 14, 577-580.
Reynolds, J.N., Racz, W.J. (1987) Effects of methylmercury on the spontaneous and potassium-evoked release of endogenous amino acids from mouse cerebellar slices. Can J Physiol Pharmacol 65, 791-798.
Szydlowska, K., Tymianski, M. (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47, 122-129.
Tao, X., West, A.E., Chen, W.G., Corfas, G., Greenberg, M.E. (2002) A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 33, 383-395.
Tian, S.M., Ma, Y.X., Shi, J., Lou, T.Y., Liu, S.S., Li, G.Y. (2015) Acrylamide neurotoxicity on the cerebrum of weaning rats. Neural Regen Res 10, 938-943.
Xu, B., Xu, Z.F., Deng, Y., Liu, W., Yang, H.B., Wei, Y.G. (2012) Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: involvement of oxidative stress and glutamate metabolism dysfunction. Toxicology 300, 112-120.
Yin, Z., Milatovic, D., Aschner, J.L., Syversen, T., Rocha, J.B., Souza, D.O., Sidoryk, M., Albrecht, J., Aschner, M. (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131, 1-10.
Zhao, H., Alam, A., San, C.Y., Eguchi, S., Chen, Q., Lian, Q., Ma, D. (2017) Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 1665, 1-21.