This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 1711
Title
p21 (CDKN1A) expression, increase leads to Cell cycle, disrupted
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
Taxonomic Applicability
Sex Applicability
Sex | Evidence |
---|---|
Unspecific | High |
Life Stage Applicability
Term | Evidence |
---|---|
Not Otherwise Specified | High |
Key Event Relationship Description
Cell cycle regulation through p21 (cyclin dependent kinase inhibitor 1A; CDKN1A) activation is demonstrated by the interactions of p21 with cyclins [Dotto, 2000]. p21 interacts directly with cyclins through a conserved region in close to its N-terminus (amino acids 17-24; Cy1) [Dotto, 2000]. The cyclin dependent kinase inhibitor, p21 has the secondary weak cyclin binding domain near its C-terminus region (amino acids 153-159), which overlaps with its proliferating cell nuclear antigen (PCNA) binding domain [Dotto, 2000]. Kinase activity of cyclin-dependent kinase (Cdk) was inhibited by Cy1 site of p21 that is important for the interaction of p21 with cyclin-Cdk complexes [Chen, 1996]. The p21 inhibits Cdk complexes such as cyclin A/E-Cdk2 or cyclin D-Cdk4 complexes, leading to the cell cycle disruption as G1/S arrest [Chen, 1996].
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
p21 has a separate cyclin-dependent kinase 2 (CDK2) binding site in its N-terminus region (amino acids 53-58) and optimal cyclin/CDK inhibition requires binding by this site as well as one of the cyclin binding sites [Dotto, 2000]. The peptide containing Cy1 site inhibited the kinase activity of cyclin E-Cdk2 and cyclin A-Cdk2 [Chen, 1996]. The p21WAF1/CIP1/sdi1 gene product inhibits the cyclin D/cdk4/6 and the cyclin E/cdk2 complexes in response to DNA-damage, resulting in G1/S arrest [Moussa, 2015, Ogryzko, 1997]. p21 inhibits cyclin-dependent kinases and regulates cell cycle to promote cell cycle arrest. Deletion of either cyclin binding site in N-terminus or C-terminus of p21, or CDK binding domain was sufficient for the kinase activity inhibition [Chen, 1996].
Empirical Evidence
- TSA induces p21 expression leading to cell cycle arrest [Gartel, 2002].
- The up-regulation of p21 signaling and in testicular germ cells was observed in diabetes [Kilarkaje, 2015].
- A study investing the effects of miR-6734 that has a sequence homology with a specific region of p21WAF1/CIP1 promoter on HCT-116 colon cancer cell growth indicated that miR-6734 up-regulated p21 gene expression and induced cell cycle arrest [Kang, 2016]. This result suggests that the direct enhancement of p21 gene expression is related to the alteration of the cell cycle distribution [Kang, 2016].
- The study of postnatal telomere indicated that dysfunction of premature telomere induces cell-cycle arrest through p21 activation in mammalian cardiomyocytes [Aix, 2016].
- The p21WAF1/CIP1/sdi1 gene product inhibits the cyclin D/cdk4/6 and the cyclin E/cdk2 complexes in response to DNA-damage, resulting in G1/S arrest [Moussa, 2015, Ogryzko, 1997].
Uncertainties and Inconsistencies
TSA promotes apoptosis via HDAC inhibition and p53 signaling pathway activation [Deng, 2016a]. It is suggested that furazolidone induces reactive oxygen species leading to suppression of p-AKT and p21, and induction of apoptosis [Deng, 2016b]. The dual roles of p21 in cell cycle arrest and anti-apoptotic effect in the testicular germ cells of diabetic rats are suggested [Kilarkaje, 2015]. The anti-apoptotic effect of p21 is mediated by caspase-3 inhibition, which demonstrates the possibility of cell-cycle independent effect on apoptosis [Deng, 2016b]. It has been demonstrated that p21 induces apoptosis in human cervical cancer cell lines [Tsao, 1999], whereas p21 is implicated in apoptosis inhibition by blocking activation of caspase-3 or interacting with ASK1 [Gartel, 2002, Zhan, 2007]. Up-regulation of p21 is implicated in the activation of DNA damage pathways, and deletion of p21 improved stem cell function and lifespan without accelerating chromosomal instability, which indicates that p21-dependent checkpoint induction affects the longevity limit [Choudhury, 2007].
Known modulating factors
Quantitative Understanding of the Linkage
Response-response Relationship
The peptide containing cyclin-binding domain of p21 in N-terminus inhibited the kinase activity of cyclin E-Cdk2 with 296 nM of the concentration in which kinase activity is inhibited in 50% (Ki) [Chen, 1996].
The peptide containing cyclin-binding domain of p21 in C-terminus showed 32,000, 800, or >300,000 nM of Ki for inhibition of the kinase activity of cyclin E-Cdk2, cyclin A-Cdk2 or cyclin D1-Cdk4, respectively [Chen, 1996].
Time-scale
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
DNA replication in Xenopus was suppressed by the GST fusion protein of p21 without amino acids 17-24 or the peptide containing cyclin binding site in N-terminus of p21 protein [Chen, 1996]. P21 regulates the E2F transcriptional activity to control cell cycle in human U2OS osteosarcoma cells (Homo sapiens) [Delavaine, 1999]. Cell cycle is regulated by p21 through cyclins and CDKs in mice (Mus musculus) [Sherr CJ, 2004].
References
Dotto GP (2000) p21WAF1/Cip1: more than a break to the cell cycle? Biochim Biophys Acta 1471: M43-M56
Chen J et al (1996) Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 16: 4673-4682
Moussa RS et al. (2015) Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget 6:29694-29711
Ogryzko VV et al. (1997) WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol 17:4877-4882
Gartel AL and Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1: 639-649
Kilarkaje N and Al-Bader MM. (2015) Diabetes-Induced Oxidative DNA Damage Alters p53-p21CIP1/Waf1 Signaling in the Rat Testis. Reproductive Sciences 22: 102–112
Kang MR et al (2016) miR-6734 up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One 11: e0160961
Aix E et al (2016) Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J Cell Biol 213: 571-583
Deng Z et al. (2016a) Histone deacetylase inhibitor trichostatin A promotes the apoptosis of osteosarcoma cells through p53 signaling pathway activation. Int J Biol Sci 12:1298-1308
Deng S et al (2016b) P21Waf1/Cip1 plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem Toxicol 88: 1-12
Tsao YP et al (1999) Adenovirus-mediated p21WAF1/SDII/CIP1 gene transfer induces apoptosis of human cervical cancer cell lines. J Virology 73: 4983-4990
Zhan J et al (2007) Negative regulation of ASK1 by p21Cip1 involves a small domain that includes serine 98 that is phosphorylated by ASK1 in vivo. Mol Cell Biol 27: 3530-3541
Choudhury AR et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39: 99-105
Delavaine L and La Thangue NB (1999) Control of E2F activity by p21Waf1/Cip1. Oncogene 18: 5381-5392
Sherr CJ and Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Gene Dev 18: 2699-2711