To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1904

Relationship: 1904

Title

The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Increase in RONS leads to Increase, DNA Damage

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Increased DNA damage leading to increased risk of breast cancer adjacent High Not Specified Allie Always (send email) Under development: Not open for comment. Do not cite Under Development
Increased reactive oxygen and nitrogen species (RONS) leading to increased risk of breast cancer adjacent High Not Specified Evgeniia Kazymova (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

Increased RONS leads to an increase in DNA damage.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help

Biological plausibiltiy is High. Reactive oxygen and nitrogen species from oxygen and respiratory activity are generally acknowledged to damage DNA under a range of cellular conditions.

Empirical support is High. Multiple studies show an increase in DNA damage with RONS treatment as well as dependent changes in both RONS and DNA damage in response to stressors. DNA damage increases with RONS dose, and temporal concordance between RONS and DNA damage events following ionizing radiation is consistent with a causative relationship, although few studies examine multiple doses and time points. A small number of studies do not find double strand breaks at physiological doses, or report an increase in one key event but not the other.

Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

High. Reactive oxygen and nitrogen species from oxygen and respiratory activity are generally acknowledged to damage DNA under typical cellular conditions (Dickinson and Chang 2011; Aziz, Nowsheen et al. 2012; Tubbs and Nussenzweig 2017). Damage commonly occurs via oxidation of a nucleotide by the hydroxyl radical (or by radicals created by nitric oxide), or can occur indirectly in nearby nucleotides following the secondary reaction of a radical created in nucleotides (Cadet, Davies et al. 2017). Oxidative damage predominantly consists of DNA lesions (structural modifications to nucleotides) including single strand breaks, although double strand breaks can occur when transcription or translation machinery encounters damaged strands (Tubbs and Nussenzweig 2017).

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

While the bulk of the evidence support a mechanism where RONS increases DNA damage, including double strand DNA breaks, not all studies report these effects. Some studies report the induction of single strand breaks by H2O2, but only show double strand breaks with H2O2 doses at or above 1 mM H2O2 (Dahm-Daphi, Sass et al. 2000; Lorat, Brunner et al. 2015) or do not find an effect of H2O2 on double strand breaks at any concentration (Gradzka and Iwanenko 2005; Ismail, Nystrom et al. 2005). These conflicting results may be partially explained by experimental variations including temperature (two of the studies showing reduced or no effect were exposed to H2O2 at 4C or colder) or other factors including catalysts required to transform H2O2 into DNA damaging OH radicals (Nakamura, Purvis et al. 2003). The reduction of IR-induced DNA damage (including double strand breaks) by antioxidants is strong evidence for an essential role of RONS in DNA damage, but antioxidants don’t reduce all DNA damage from IR and anti-oxidants that reduce double strand breaks and chromosomal aberrations after IR don’t necessarily reduce baseline DNA damage (Fetisova, Antoschina et al. 2015). This incomplete effect suggests either that antioxidants are unable to fully reduce endogenous RONS, or that additional sources of DNA damage are also at work. Furthermore, RONS can be observed following IR in the absence of DNA nucleotide damage (Yoshida, Goto et al. 2012) and counter to expectations lower (10 uM) doses of H2O2 applied six days after IR were associated with a decrease in detectable micronuclei (Werner, Wang et al. 2014), suggesting that additional factors (such as repair and apoptosis or changes in endogenous antioxidants) may influence the effect of RONS on IR-induced DNA damage. Finally, double strand breaks and chromosomal damage can be observed following IR in the absence of measured RONS (Suzuki, Kashino et al. 2009), although since antioxidants are still capable of reducing DNA damage in the absence of measurable RONS, such a discrepancy might be attributable to a lack of sensitivity in RONS detection methods (Yang, Asaad et al. 2005).

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
Time-scale
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

RONS activates or is essential to many inflammatory pathways including TGF-β  (Barcellos-Hoff and Dix 1996; Jobling, Mott et al. 2006), TNF (Blaser, Dostert et al. 2016), Toll-like receptor (TLR) (Park, Jung et al. 2004; Nakahira, Kim et al. 2006; Powers, Szaszi et al. 2006; Miller, Goodson et al. 2017; Cavaillon 2018), and NF-kB signaling (Gloire, Legrand-Poels et al. 2006; Morgan and Liu 2011). These interactions principally involve ROS, but RNS can indirectly activate TLRs and possibly NF-kB. Since inflammatory signaling and activated immune cells can also increase the production of RONS, positive feedback and feedforward loops can occur (Zhao and Robbins 2009; Ratikan, Micewicz et al. 2015; Blaser, Dostert et al. 2016).

Damage inflicted by RONS on cells activate TLRs and other receptors to promote release of cytokines (Ratikan, Micewicz et al. 2015). For example, oxidized lipids or oxidative stress-induced heat shock proteins can activate TLR4 (Miller, Goodson et al. 2017; Cavaillon 2018).

ROS is essential to TLR4 activation of downstream signals including NF-kB. Activation of TLR4 promotes the surface expression and movement of TLR4 into signal-promoting lipid rafts (Nakahira, Kim et al. 2006; Powers, Szaszi et al. 2006). This signal promotion requires NADPH-oxidase and ROS (Park, Jung et al. 2004; Nakahira, Kim et al. 2006; Powers, Szaszi et al. 2006). ROS is also required for the TLR4/TRAF6/ASK-1/p38 dependent activation of inflammatory cytokines (Matsuzawa, Saegusa et al. 2005). ROS therefore amplifies the inflammatory process.

RONS can also fail to activate or actively inhibit inflammatory pathways, and the circumstances determining response to RONS are not well known (Gloire, Legrand-Poels et al. 2006).

Barcellos-Hoff, M. H. and T. A. Dix (1996). "Redox-mediated activation of latent transforming growth factor-beta 1." Mol Endocrinol 10(9): 1077-1083.

Blaser, H., C. Dostert, et al. (2016). "TNF and ROS Crosstalk in Inflammation." Trends in cell biology 26(4): 249-261.

Cavaillon, J.-M. (2018). Damage-associated Molecular Patterns. Inflammation: From Molecular and Cellular Mechanisms to the Clinic. J.-M. Cavaillon and M. Singer, Wiley-VCHVerlagGmbH&Co.KGaA.: 57-80.

Gloire, G., S. Legrand-Poels, et al. (2006). "NF-kappaB activation by reactive oxygen species: fifteen years later." Biochem Pharmacol 72(11): 1493-1505.

Jobling, M. F., J. D. Mott, et al. (2006). "Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species." Radiation research 166(6): 839-848.

Matsuzawa, A., K. Saegusa, et al. (2005). "ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity." Nat Immunol 6(6): 587-592.

Miller, M. F., W. H. Goodson, et al. (2017). "Low-Dose Mixture Hypothesis of Carcinogenesis Workshop: Scientific Underpinnings and Research Recommendations." Environmental health perspectives 125(2): 163-169.

Morgan, M. J. and Z. G. Liu (2011). "Crosstalk of reactive oxygen species and NF-kappaB signaling." Cell Res 21(1): 103-115.

Nakahira, K., H. P. Kim, et al. (2006). "Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts." J Exp Med 203(10): 2377-2389.

Park, H. S., H. Y. Jung, et al. (2004). "Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B." J Immunol 173(6): 3589-3593.

Powers, K. A., K. Szaszi, et al. (2006). "Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages." J Exp Med 203(8): 1951-1961.

Ratikan, J. A., E. D. Micewicz, et al. (2015). "Radiation takes its Toll." Cancer Lett 368(2): 238-245.

Zhao, W. and M. E. Robbins (2009). "Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications." Curr Med Chem 16(2): 130-143.

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

References

List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Ameziane-El-Hassani, R., M. Boufraqech, et al. (2010). "Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells." Cancer Res 70(10): 4123-4132.

Ameziane-El-Hassani, R., M. Talbot, et al. (2015). "NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation." Proceedings of the National Academy of Sciences of the United States of America 112(16): 5051-5056.

Aziz, K., S. Nowsheen, et al. (2012). "Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy." Pharmacology & therapeutics 133(3): 334-350.

Azzam, E. I., S. M. De Toledo, et al. (2002). "Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures." Cancer research 62(19): 5436-5442.

Bensimon, J., D. Biard, et al. (2016). "Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress." Mol Carcinog 55(3): 245-254.

Berdelle, N., T. Nikolova, et al. (2011). "Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells." Molecular cancer therapeutics 10(12): 2224-2233.

Buonanno, M., S. M. de Toledo, et al. (2011). "Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress." Radiation research 175(4): 405-415.

Cadet, J., K. J. A. Davies, et al. (2017). "Formation and repair of oxidatively generated damage in cellular DNA." Free radical biology & medicine 107: 13-34.

Choi, K. M., C. M. Kang, et al. (2007). "Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK." Oncol Rep 17(5): 1183-1188.

Dahm-Daphi, J., C. Sass, et al. (2000). "Comparison of biological effects of DNA damage induced by ionizing radiation and hydrogen peroxide in CHO cells." International journal of radiation biology 76(1): 67-75.

Datta, K., S. Suman, et al. (2012). "Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine." PLoS One 7(8): e42224.

Dayal, D., S. M. Martin, et al. (2008). "Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells." Biochem J 413(1): 185-191.

Dayal, D., S. M. Martin, et al. (2009). "Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation." Radiation research 172(6): 737-745.

Denissova, N. G., C. M. Nasello, et al. (2012). "Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage." Carcinogenesis 33(1): 149-155.

Dickinson, B. C. and C. J. Chang (2011). "Chemistry and biology of reactive oxygen species in signaling or stress responses." Nature chemical biology 7(8): 504-511.

Douki, T., J. L. Ravanat, et al. (2006). "Minor contribution of direct ionization to DNA base damage inducedby heavy ions." International journal of radiation biology 82(2): 119-127.

Driessens, N., S. Versteyhe, et al. (2009). "Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ." Endocrine-related cancer 16(3): 845-856.

Du, C., Z. Gao, et al. (2009). "Mitochondrial ROS and radiation induced transformation in mouse embryonic fibroblasts." Cancer Biol Ther 8(20): 1962-1971.

Fetisova, E. K., M. M. Antoschina, et al. (2015). "Radioprotective effects of mitochondria-targeted antioxidant SkQR1." Radiation research 183(1): 64-71.

Gradzka, I. and T. Iwanenko (2005). "A non-radioactive, PFGE-based assay for low levels of DNA double-strand breaks in mammalian cells." DNA repair 4(10): 1129-1139.

Han, W., S. Chen, et al. (2010). "Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation." Mutation research 684(1-2): 81-89.

Ismail, I. H., S. Nystrom, et al. (2005). "Activation of ataxia telangiectasia mutated by DNA strand break-inducing agents correlates closely with the number of DNA double strand breaks." J Biol Chem 280(6): 4649-4655.

Jones, J. A., P. K. Riggs, et al. (2007). "Ionizing radiation-induced bioeffects in space and strategies to reduce cellular injury and carcinogenesis." Aviat Space Environ Med 78(4 Suppl): A67-78.

Liu, X. and J. L. Zweier (2001). "A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes." Free radical biology & medicine 31(7): 894-901.

Lorat, Y., C. U. Brunner, et al. (2015). "Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair." DNA repair 28: 93-106.

Manna, K., U. Das, et al. (2015). "Naringin inhibits gamma radiation-induced oxidative DNA damage and inflammation, by modulating p53 and NF-kappaB signaling pathways in murine splenocytes." Free Radic Res 49(4): 422-439.

Martin, N. T., K. Nakamura, et al. (2014). "Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks." Cell Death Dis 5: e1130.

Murnane, J. P. (2012). "Telomere dysfunction and chromosome instability." Mutation research 730(1-2): 28-36.

Nakamura, J., E. R. Purvis, et al. (2003). "Micromolar concentrations of hydrogen peroxide induce oxidative DNA lesions more efficiently than millimolar concentrations in mammalian cells." Nucleic acids research 31(6): 1790-1795.

Oya, Y., K. Yamamoto, et al. (1986). "The biological activity of hydrogen peroxide. I. Induction of chromosome-type aberrations susceptible to inhibition by scavengers of hydroxyl radicals in human embryonic fibroblasts." Mutation research 172(3): 245-253.

Ozyurt, H., O. Cevik, et al. (2014). "Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats." Free Radic Res 48(10): 1247-1255.

Pazhanisamy, S. K., H. Li, et al. (2011). "NADPH oxidase inhibition attenuates total body irradiation-induced haematopoietic genomic instability." Mutagenesis 26(3): 431-435.

Saenko, Y., A. Cieslar-Pobuda, et al. (2013). "Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation." Radiation research 180(4): 360-366.

Sandhu, J. K. and H. C. Birnboim (1997). "Mutagenicity and cytotoxicity of reactive oxygen and nitrogen species in the MN-11 murine tumor cell line." Mutation research 379(2): 241-252.

Seager, A. L., U. K. Shah, et al. (2012). "Pro-oxidant induced DNA damage in human lymphoblastoid cells: homeostatic mechanisms of genotoxic tolerance." Toxicological sciences : an official journal of the Society of Toxicology 128(2): 387-397.

Sharma, V., L. B. Collins, et al. (2016). "Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations." Oncotarget 7(18): 25377-25390.

Stanicka, J., E. G. Russell, et al. (2015). "NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells." The Journal of biological chemistry 290(15): 9348-9361.

Suzuki, K., G. Kashino, et al. (2009). "Long-term persistence of X-ray-induced genomic instability in quiescent normal human diploid cells." Mutation research 671(1-2): 33-39.

Tubbs, A. and A. Nussenzweig (2017). "Endogenous DNA Damage as a Source of Genomic Instability in Cancer." Cell 168(4): 644-656.

Werner, E., H. Wang, et al. (2014). "Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability." PLoS One 9(10): e108234.

Winyard, P. G., S. P. Faux, et al. (1992). "Bleomycin-induced unscheduled DNA synthesis in non-permeabilized human and rat hepatocytes is not paralleled by 8-oxo-7,8-dihydrodeoxyguanosine formation." Biochem Pharmacol 44(7): 1255-1260.

Yang, H., V. Anzenberg, et al. (2007). "The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts." Radiation research 168(3): 292-298.

Yang, H., N. Asaad, et al. (2005). "Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts." Oncogene 24(12): 2096-2103.

Yang, Y., M. Durando, et al. (2013). "Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage." Nucleic acids research 41(4): 2296-2312.

Yoshida, T., S. Goto, et al. (2012). "Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation." Free Radic Res 46(2): 147-153.

Zhou, H., V. N. Ivanov, et al. (2008). "Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects." Cancer Res 68(7): 2233-2240.