To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:213

Relationship: 213


The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Inhibition, NMDARs leads to Decreased, Calcium influx

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities adjacent Moderate Agnes Aggy (send email) Open for citation & comment TFHA/WNT Endorsed
Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development leads to neurodegeneration with impairment in learning and memory in aging adjacent Moderate Arthur Author (send email) Open for citation & comment TFHA/WNT Endorsed

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

The NMDA receptor is distinct in two ways: firstly, it is both ligand-gated and voltage-dependent and secondly, it requires co-activation by two ligands: glutamate and either D-serine or glycine.

NMDA receptor activation allows the influx of Ca2+ only when the receptor is occupied by L-glutamate or other agonists (and removal of Mg++ block) resulting in the postsynaptic membrane depolarization. In contrast, binding of antagonist to NMDA receptor decreases or eliminates Ca2+ influx and consequently dramatically decreases intracellular influx of Ca2+ levels (reviewed in Higley and Sabatini, 2012).

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help
Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

The relationship between KE (NMDARs, Inhibition) and KE (Calcium influx, Decreased) is plausible as the function evaluation of NMDA receptors is commonly carried out by measurement of intracellular influx of Ca2+ upon NMDA receptor stimulation by agonist. Calcium imaging techniques have been extensively utilized to investigate the relationship between these two KEs. Almost 15% of the current through NMDA receptors is mediated by Ca2+ under physiological conditions (Higley and Sabatini, 2012).

It has been shown that less than five and, occasionally only a single NMDA receptor opens under physiological conditions, causing a total Ca2+ influx of about 6000 ions into a dendritic spine head reaching a concentration of ∼10 µM (Higley and Sabatini, 2012). However, the majority of the ions are rapidly eliminated by binding Ca2+ proteins, reaching ∼1 µM of free Ca2+ concentration (Higley and Sabatini, 2012).

In rat primary forebrain cultures, the intracellular Ca2+ increases after activation of the NMDA receptor and this increase is blocked when the cells are cultured under Ca2+ free conditions, demonstrating that the NMDA-evoked increase in intracellular Ca2+ derives from extracellular and not intracellular sources (Liu et al., 2013).

Neurons in brain slices from wild-type (GluRε2+/+) mice showed increase of intracellular Ca2+ in the presence of 100 μM NMDA that was completely inhibited after exposure to 100 mM APV. In contrast, the NMDA-mediated increase in Ca2+ was absent in brain slices from GluRε2−/− mice that do not possess any functional NMDA receptors in the developing neocortex (Okada et al., 2003).

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

The structural diversity of NMDA subunits can influence the functionality of the receptors and their permeability to Ca2+. For example, NR2B subunits show higher affinity for glutamate binding and higher Ca2+ permeability (reviewed in Higley and Sabatini, 2012). But NMDA receptor subunit composition is not the only parameter that influences Ca2+ entrance in the cytosol. Membrane potential due to pore blockade by extracellular Mg2+ and receptor phosphorylation are two additional regulator of Ca2+ influx through NMDA receptors (reviewed in Higley and Sabatini, 2012).

Entrance of Ca2+ into neuronal cell can also happen through KA and AMPA receptors but to a smaller extent compared to NMDA receptors (reviewed in Higley and Sabatini, 2012). However, recent findings suggest that AMPA receptors may also contribute to Ca2+ signalling during CNS development (reviewed in Cohen and Greenberg, 2008). Early in development cortical pyramidal neurons express calcium-permeable, GluR2 subunit–lacking AMPA receptors. During postnatal development these neurons undergo a switch in the subunit composition of AMPA receptors, expressing instead GluR2-containing, calcium-impermeable AMPA receptor suggesting that the main point entrance of Ca2+ at this developmental stage are NMDA receptors.

Furthermore, Ca2+ entry occurs through L- and H-type voltage-dependent Ca2+channels (L-VDCCs) (Perez-Reyes and Schneider, 1994; Berridge, 1998; Felix, 2005) that are encountered in neurons, suggesting that there are more possible entrance sites for Ca2+ to get into the cytosol rather than only through NMDA receptors.

Interestingly, Pb2+ has the ability to mimic or even compete with Ca2+ in the CNS (Flora et al., 2006). Indeed, Pb2+ is accumulated in the same mitochondrial compartment as Ca2+ and it has been linked to disruptions in intracellular calcium metabolism (Bressler and Goldstein, 1991). So, it can be that the reduced levels of Ca2+ after Pb2+ exposure may not be attributed to NMDA receptor inhibition but also to the ability of this heavy metal to compete with Ca2+. To make things more complicated, recent findings suggest that BDNF can also acutely elicit an increase in intracellular Ca2+ concentration, which is attributed not only to the influx of extracellular Ca2+ but also to Ca2+ mobilization from intracellular calcium stores (Numakawa et al., 2002; He et al., 2005). These findings derive from primary cultures of cortical neurons (E18 or 2-3 PND), where BDNF-evoked Ca2+ signals have not been altered neither by tetrodotoxin nor by a cocktail of glutamate receptor blockers (CNQX and APV), pointing out the importance of BDNF in Ca2+ homeostasis (Numakawa et al., 2002; He et al., 2005).

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

Besides the above studies described in rodents, intracellular Ca2+ regulation has been studied at the neuromuscular junction of larval Drosophila exposed to 0, 100 μM or 250 μM Pb2+ (He et al., 2009).


List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Berridge MJ. (1998) Neuronal calcium signaling. Neuron 21: 13-26.

Bressler JP, Goldstein GW. (1991) Mechanisms of lead neurotoxicity. Biochem Pharmacol. 41: 479-484.

Carpenter DO, Hussain RJ, Berger DF, Lombardo JP, Park HY. (2002) Electrophysiologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ Health Perspect. 110: 377-386.

Cohen S, Greenberg ME. (2008) Communication between the synapse and the nucleus in neuronal development, plasticity and disease. Annu Rev Cell Dev Biol. 24: 183-209.

Cordova FM, Rodrigues LS, Giocomelli MBO, Oliveira CS, Posser T, Dunkley PR, Leal RB. (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res. 998: 65-72.

Felix R. (2005) Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res. 25: 57-71.

Ferguson C, Kern M, Audesirk G. (2000) Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism. Neurotoxicology 21: 365-378.

Flora SJS, Flora G, Saxena G. (2006) Environmental occurrence, health effects and management of lead poisoning, in Lead: Chemistry, Analytical Aspects, Environmental Impacts and Health Effects (Cascas SB and Sordo J eds) Elsevier, Amsterdam, The Netherlands, pp 158-228.

He J, Gong H, Luo Q. (2005) BDNF acutely modulates synaptic transmission and calcium signalling in developing cortical neurons. Cell Physiol Biochem. 16: 69-76.

He T, Hirsch HV, Ruden DM, Lnenicka GA. (2009) Chronic lead exposure alters presynaptic calcium regulation and synaptic facilitation in Drosophila larvae. Neurotoxicology 30: 777-784.

Higley MJ, Sabatini BL. (2012) Calcium signalling in dendritic spines. Cold Spring Harb Perspect Biol 4: a005686.

Hussain RJ, Parsons PJ, Carpenter DO. (2000) Effects of lead on long-term potentiation in hippocampal CA3 vary with age. Brain Res Dev Brain Res. 121: 243-252.

Kirberger, M. (2011) Defining a Molecular Mechanism for Lead toxicity via Calcium-Binding Proteins. Chemistry Dissertation. Georgia State University. ScholarWorks@Georgia State University.

Li XM, Gu Y, She JQ, Zhu DM, Niu ZD, Wang M, Chen JT, Sun LG, Ruan DY. (2006) Lead inhibited N-methyl-D-aspartate receptor-independent long-term potentiation involved ryanodine-sensitive calcium stores in rat hippocampal area CA1. Neuroscience. 139: 463-473.

Liu F, Patterson TA, Sadovova N, Zhang X, Liu S, Zou X, Hanig JP, Paule MG, Slikker W Jr, Wang C. (2013) Ketamine-induced neuronal damage and altered N-methyl-D-aspartate receptor function in rat primary forebrain culture. Toxicol Sci. 131: 548-557.

Numakawa T, Yamagishi S, Adachi N, Matsumoto T, Yokomaku D, Yamada M, Hatanaka H (2002) Brain-derived neurotrophic factor-induced potentiation of Ca2+ oscillations in developing cortical neurons. J Biol Chem. 277: 6520-6529.

Okada H, Miyakawa N, Mori H, Mishina M, Miyamoto Y, Hisatsune T. (2003) NMDA receptors in cortical development are essential for the generation of coordinated increases in [Ca2+](i) in "neuronal domains". Cereb Cortex. 13 :749-757.

Perez-Reyes E, Schneider T. (1994) Calcium channels: Structure, function, and classification. Drug Dev Res. 33: 295–318.

Sandhir R, Gill KD. (1994) Alterations in calcium homeostasis on lead exposure in rat synaptosomes. Mol Cell Biochem. 131: 25-33.

Schneider JS, Mettil W, Anderson DW. (2012) Differential Effect of Postnatal Lead Exposure on Gene Expression in the Hippocampus and Frontal Cortex. J Mol Neurosci. 47: 76-88.

Sinner B, Friedrich O, Zink W, Martin E, Fink RH, et al. (2005) Ketamine stereoselectively inhibits spontaneous Ca2+-oscillations in cultured hippocampal neurons. Anesthesia and analgesia 100: 1660-1666.

Toscano CD, Guilarte TR. (2005) Lead neurotoxicity: From exposure to molecular effects. Brain Res Rev. 49: 529-555.

Toscano CD, Hashemzadeh-Gargari H, McGlothan JL, Guilarte TR. (2002) Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Dev Brain Res. 139: 217-226.

Toscano CD, McGlothan JL, Guilarte TR. (2003) Lead exposure alters cyclic-AMP response element binding protein phosphorylation and binding activity in the developing rat brain. Dev Brain Res. 145: 219-228.