To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:363

Relationship: 363

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

N/A, Mitochondrial dysfunction 1 leads to Cell injury/death

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Endocytic lysosomal uptake leading to liver fibrosis adjacent Moderate Low Allie Always (send email) Under development: Not open for comment. Do not cite EAGMST Under Review
Binding of agonists to ionotropic glutamate receptors in adult brain causes excitotoxicity that mediates neuronal cell death, contributing to learning and memory impairment. adjacent Moderate Low Allie Always (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

ROS generation is known to activate different pathways leading to apoptosis, whereas depletion of energy production induces necrotic cell death.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

There is functional mechanistic understanding supporting this relationship between KE3 and KE4.

ROS are known to stimulate a number of events and pathways that lead to apoptosis, triggered by ROS-induced ER stress signalling pathway (Lu et al., 2014), caspase-dependent and -independent apoptosis (Zhou et al., 2015), mitogen-activated protein kinase (MAPK) signal transduction pathways (reviewed in Cuadrado and Nebreda, 2010, Harper and LoGrasso, 2001).

Depletion of cellular ATP is known to cause switching from apoptotic cell death triggered by a variety of stimuli to necrotic cell death (Leist et al., 1997) suggesting that the level of intracellular ATP determines whether the cell dies by apoptosis or necrosis (Nicotera et al., 1998). There is strong proof that apoptosis requires energy, as it is a highly regulated process involving a number of ATP-dependent steps such as caspase activation, enzymatic hydrolysis of macromolecules, chromatin condensation, bleb formation and apoptotic body formation (Richter et al., 1996).

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Rats have been administered with DA at the dose of 1.0 mg/kg for 15 days. The histochemical analysis of hippocampus from these animals has revealed no presence of apoptotic bodies and no Fluoro-Jade B positive cells (Schwarz et al., 2014).

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Neuronal necrosis has been noted in sea lions accidentally exposed to DomA (Silvagni et al., 2005) that correlated well with the histopathological findings previously reported in experimental studies (Tryphonas et al., 1990).

References

List of the literature that was cited for this KER description. More help

Cuadrado A, Nebreda AR., Mechanisms and functions of p38 MAPK signalling. Biochem J., 2010, 429(3): 403–417.

Erin N, Billingsley ML., Domoic acid enhances Bcl-2-calcineurin-inositol-1,4,5-trisphosphate receptor interactions and delayed neuronal death in rat brain slices. Brain Res., 2004, 1014: 45-52.

Giordano G, White CC, McConnachie LA, Fernandez C, Kavanagh TJ, Costa LG., Neurotoxicity of domoic Acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol Pharmacol., 2006, 70: 2116-2126.

Giordano G, White CC, Mohar I, Kavanagh TJ, Costa LG., Glutathione levels modulate domoic acid-induced apoptosis in mouse cerebellar granule cells. Toxicol Sci., 2007, 100: 433-444.

Giordano G, Klintworth HM, Kavanagh TJ, Costa LG., Apoptosis induced by domoic acid in mouse cerebellar granule neurons involves activation of p38 and JNK MAP kinases. Neurochem Int., 2008, 52: 1100-1105.

Giordano G, Li L, White CC, Farin FM, Wilkerson HW, Kavanagh TJ, Costa LG., Muscarinic receptors prevent oxidative stress-mediated apoptosis induced by domoic acid in mouse cerebellar granule cells. J Neurochem., 2009, 109: 525-538.

Harper SJ, LoGrasso P., Signalling for survival and death in neurones: the role of stress-activated kinases. JNK and p38. Cell Signal., 2001, 13(5): 299–310.

Larm JA, Beart PM, Cheung NS., Neurotoxin domoic acid produces cytotoxicity via kainate- and AMPA-sensitive receptors in cultured cortical neurones. Neurochem Int., 1997, 31: 677-682.

Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P., Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med., 1997, 185: 1481−1486.

Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF., Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol., 2010, 20: 598-612.

Lu J, Wu DM, Zheng ZH, Zheng YL, Hu B, Zhang ZF., Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain., 2011, 134: 783-797.

Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF., Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice. Free Radic Biol Med., 2012, 52(3): 646-59.

Lu TH, Su CC, Tang FC, Chen CH, Yen CC, Fang KM, Lee KL, Hung DZ, Chen YW., Chloroacetic acid triggers apoptosis in neuronal cells via a reactive oxygen species-induced endoplasmic reticulum stress signaling pathway. Chem Biol Interact., 2014, 225: 1-12.

Nicotera P, Leist M, Ferrando-May E., Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett., 1998, 102-103: 139-142.

Qiu S, Pak CW, Currás-Collazo MC., Sequential involvement of distinct glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures: effect of multiple dose/duration paradigms, chronological age, and repeated exposure. Toxicol Sci., 2006, 89: 243-256.

Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett., 1996, 378: 107-110.

Schwarz M, Jandová K, Struk I, Marešová D, Pokorný J, Riljak V. Low dose domoic acid influences spontaneous behavior in adult rats. Physiol Res., 2014, 63: 369-76.

Silvagni PA, Lowenstine LJ, Spraker T, Lipscomb TP, Gulland FMD., Pathology of Domoic Acid Toxicity in California Sea Lions (Zalophus californianus). Vet Path., 2005, 42: 184-191.

Tryphonas L, Truelove J, Iverson F, Todd EC, Nera EA. Neuropathology of experimental domoic acid poisoning in non-human primates and rats. Can Dis Wkly Rep. 1990 Sep;16 Suppl 1E:75-81.

Tsunekawa K, Kondo F, Okada T, Feng GG, Huang L, Ishikawa N, Okada S., Enhanced expression of WD repeat-containing protein 35 (WDR35) stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation. BMC Neurosci., 2013, 14: 4-16.

Wu DM, Lu J, Zheng YL, Zhang YQ, Hu B, Cheng W, Zhang ZF, Li MQ., Small interfering RNA-mediated knockdown of protein kinase C zeta attenuates domoic acid-induced cognitive deficits in mice. Toxicol Sci., 2012, 128: 209-222.

Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, Zhang J, Xu C, Liu L, Huang S, Chen L., Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci., 2015, 143: 81-96.