Aop: 256

Title

Each AOP should be given a descriptive title that takes the form “MIE leading to AO”. For example, “Aromatase inhibition [MIE] leading to reproductive dysfunction [AO]” or “Thyroperoxidase inhibition [MIE] leading to decreased cognitive function [AO]”. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE. More help

Inhibition of mitochondrial DNA polymerase gamma leading to kidney toxicity

Short name
A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
Inhibition of mitochondrial DNA polymerase gamma leading to kidney toxicity

Graphical Representation

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (see this page for example). The graphical summary is prepared and uploaded by the user (templates are available) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP Development Workplan. The graphical representation or AOP diagram provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP (for more information please see page 19 of the Users' Handbook).If you already have a graphical representation of your AOP in electronic format, simple save it in a standard image format (e.g. jpeg, png) then click ‘Choose File’ under the “Graphical Representation” heading, which is part of the Summary of the AOP section, to select the file that you have just edited. Files must be in jpeg, jpg, gif, png, or bmp format. Click ‘Upload’ to upload the file. You should see the AOP page with the image displayed under the “Graphical Representation” heading. To remove a graphical representation file, click 'Remove' and then click 'OK.'  Your graphic should no longer be displayed on the AOP page. If you do not have a graphical representation of your AOP in electronic format, a template is available to assist you.  Under “Summary of the AOP”, under the “Graphical Representation” heading click on the link “Click to download template for graphical representation.” A Powerpoint template file should download via the default download mechanism for your browser. Click to open this file; it contains a Powerpoint template for an AOP diagram and instructions for editing and saving the diagram. Be sure to save the diagram as jpeg, jpg, gif, png, or bmp format. Once the diagram is edited to its final state, upload the image file as described above. More help

Authors

List the name and affiliation information of the individual(s)/organisation(s) that created/developed the AOP. In the context of the OECD AOP Development Workplan, this would typically be the individuals and organisation that submitted an AOP development proposal to the EAGMST. Significant contributors to the AOP should also be listed. A corresponding author with contact information may be provided here. This author does not need an account on the AOP-KB and can be distinct from the point of contact below. The list of authors will be included in any snapshot made from an AOP. More help

Prof. Dr. Angela Mally Department of Toxicology University of Würzburg Versbacher Str. 9 97078 Würzburg Germany Phone/fax:          +49 931 31-81194 Email:                  mally@toxi.uni-wuerzburg.de

Point of Contact

Indicate the point of contact for the AOP-KB entry itself. This person is responsible for managing the AOP entry in the AOP-KB and controls write access to the page by defining the contributors as described below. Clicking on the name will allow any wiki user to correspond with the point of contact via the email address associated with their user profile in the AOP-KB. This person can be the same as the corresponding author listed in the authors section but isn’t required to be. In cases where the individuals are different, the corresponding author would be the appropriate person to contact for scientific issues whereas the point of contact would be the appropriate person to contact about technical issues with the AOP-KB entry itself. Corresponding authors and the point of contact are encouraged to monitor comments on their AOPs and develop or coordinate responses as appropriate.  More help
Agnes Aggy   (email point of contact)

Contributors

List user names of all  authors contributing to or revising pages in the AOP-KB that are linked to the AOP description. This information is mainly used to control write access to the AOP page and is controlled by the Point of Contact.  More help
  • Angela Mally
  • Agnes Aggy

Status

The status section is used to provide AOP-KB users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. “Author Status” is an author defined field that is designated by selecting one of several options from a drop-down menu (Table 3). The “Author Status” field should be changed by the point of contact, as appropriate, as AOP development proceeds. See page 22 of the User Handbook for definitions of selection options. More help
Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite Under Development 1.43 Included in OECD Work Plan
This AOP was last modified on April 05, 2021 18:16
The date the AOP was last modified is automatically tracked by the AOP-KB. The date modified field can be used to evaluate how actively the page is under development and how recently the version within the AOP-Wiki has been updated compared to any snapshots that were generated. More help

Revision dates for related pages

Page Revision Date/Time
Inhibition of mitochondrial DNA polymerase gamma (Pol gamma) October 25, 2017 07:48
Depletion, mtDNA October 25, 2017 07:49
Dysfunction, Mitochondria October 25, 2017 07:49
Increase, Cytotoxicity (renal tubular cell) September 16, 2017 10:16
Occurrence, Kidney toxicity September 16, 2017 10:16
Inhibition, mitochondrial DNA polymerase gamma (Pol gamma) leads to Depletion, mtDNA October 25, 2017 07:52
Depletion, mtDNA leads to Dysfunction, Mitochondria October 25, 2017 07:53
Dysfunction, Mitochondria leads to Increase, Cytotoxicity (renal tubular cell) October 25, 2017 07:53
Increase, Cytotoxicity (renal tubular cell) leads to Occurrence, Kidney toxicity October 25, 2017 07:54
Tenofovir October 25, 2017 07:45
Tenofovir disoproxil fumarate October 25, 2017 07:46
Adefovir October 25, 2017 07:46
Adefovir dipivoxil October 25, 2017 07:46
Cidofovir October 25, 2017 07:47

Abstract

In the abstract section, authors should provide a concise and informative summation of the AOP under development that can stand-alone from the AOP page. Abstracts should typically be 200-400 words in length (similar to an abstract for a journal article). Suggested content for the abstract includes the following: The background/purpose for initiation of the AOP’s development (if there was a specific intent) A brief description of the MIE, AO, and/or major KEs that define the pathway A short summation of the overall WoE supporting the AOP and identification of major knowledge gaps (if any) If a brief statement about how the AOP may be applied (optional). The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance More help

This Adverse Outcome Pathway describes the sequential key events that link inhibition of mitochondrial DNA polymerase gamma (Pol gamma) to kidney toxicity. Nucleoside and nucleotide  (nucleos(t)ide) analogs are widely used as antiviral drugs for the effective treatment of viral infections including HIV and chronic Hepatitis B virus infections. As structural analogs of substrate nucleotides, these drugs act as chain terminators of viral DNA synthesis via competitive inhibition of reverse transcriptase or viral DNA polymerases, thereby blocking virus replication. Besides targeting viral enzymes, nucleos(t)ide antiviral agents are also substrates for human DNA polymerases, which may lead to moderate to life-threatening adverse drug reactions, including peripheral neuropathy, myopathy, lactic acidosis, and acute and chronic kidney injury [1-4]. Toxicity of antiviral nucleos(t)ides has been linked to mitochondrial dysfunction as a consequence of inhibition of mitochondrial DNA polymerase gamma (Pol gamma), a particular sensitive target, and associated inhibition of mtDNA replication [1, 3]. In the kidney, the proximal tubule is the main target of antiviral nucleos(t)ide drug toxicity due to active uptake via basolateral organic anion transporters (e.g. OAT1 and OAT3) expressed at this site [5, 6]. Based on the current mechanistic understanding, the subsequent sequence of key events (KE) leading to kidney injury as an adverse outcome can be described as inhibition of Pol gamma as the molecular initiating event (MIE), leading to mtDNA depletion (KE1), mitochondrial dysfuntion (KE2) and proximal tubule cell toxicity (KE3).

Background (optional)

This optional subsection should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. Examples of potential uses of the optional background section are listed on pages 24-25 of the User Handbook. More help

Summary of the AOP

This section is for information that describes the overall AOP. The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help

Events:

Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a stressor and the biological system) of an AOP. More help
Key Events (KE)
This table summarises all of the KEs of the AOP. This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry acts as a link to the individual KE description page.  More help
Adverse Outcomes (AO)
An AO is a specialised KE that represents the end (an adverse outcome of regulatory significance) of an AOP.  More help
Sequence Type Event ID Title Short name
1 MIE 1481 Inhibition of mitochondrial DNA polymerase gamma (Pol gamma) Inhibition, mitochondrial DNA polymerase gamma (Pol gamma)
2 KE 1482 Depletion, mtDNA Depletion, mtDNA
3 KE 1483 Dysfunction, Mitochondria Dysfunction, Mitochondria
4 KE 709 Increase, Cytotoxicity (renal tubular cell) Increase, Cytotoxicity (renal tubular cell)
5 AO 814 Occurrence, Kidney toxicity Occurrence, Kidney toxicity

Relationships Between Two Key Events (Including MIEs and AOs)

TESTINGThis table summarises all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the individual KER description page.To add a key event relationship click on either Add relationship: events adjacent in sequence or Add relationship: events non-adjacent in sequence.For example, if the intended sequence of KEs for the AOP is [KE1 > KE2 > KE3 > KE4]; relationships between KE1 and KE2; KE2 and KE3; and KE3 and KE4 would be defined using the add relationship: events adjacent in sequence button.  Relationships between KE1 and KE3; KE2 and KE4; or KE1 and KE4, for example, should be created using the add relationship: events non-adjacent button. This helps to both organize the table with regard to which KERs define the main sequence of KEs and those that provide additional supporting evidence and aids computational analysis of AOP networks, where non-adjacent KERs can result in artifacts (see Villeneuve et al. 2018; DOI: 10.1002/etc.4124).After clicking either option, the user will be brought to a new page entitled ‘Add Relationship to AOP.’ To create a new relationship, select an upstream event and a downstream event from the drop down menus. The KER will automatically be designated as either adjacent or non-adjacent depending on the button selected. The fields “Evidence” and “Quantitative understanding” can be selected from the drop-down options at the time of creation of the relationship, or can be added later. See the Users Handbook, page 52 (Assess Evidence Supporting All KERs for guiding questions, etc.).  Click ‘Create [adjacent/non-adjacent] relationship.’  The new relationship should be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. To edit a key event relationship, click ‘Edit’ next to the name of the relationship you wish to edit. The user will be directed to an Editing Relationship page where they can edit the Evidence, and Quantitative Understanding fields using the drop down menus. Once finished editing, click ‘Update [adjacent/non-adjacent] relationship’ to update these fields and return to the AOP page.To remove a key event relationship to an AOP page, under Summary of the AOP, next to “Relationships Between Two Key Events (Including MIEs and AOs)” click ‘Remove’ The relationship should no longer be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. More help

Network View

The AOP-Wiki automatically generates a network view of the AOP. This network graphic is based on the information provided in the MIE, KEs, AO, KERs and WoE summary tables. The width of the edges representing the KERs is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. More help

Stressors

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help
Name Evidence Term
Tenofovir High
Tenofovir disoproxil fumarate High
Adefovir High
Adefovir dipivoxil High
Cidofovir High

Life Stage Applicability

Identify the life stage for which the KE is known to be applicable. More help
Life stage Evidence
All life stages Not Specified

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Human, rat, mouse Human, rat, mouse High NCBI

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Sex Evidence
Unspecific Not Specified

Overall Assessment of the AOP

This section addresses the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). The goal of the overall assessment is to provide a high level synthesis and overview of the relative confidence in the AOP and where the significant gaps or weaknesses are (if they exist). Users or readers can drill down into the finer details captured in the KE and KER descriptions, and/or associated summary tables, as appropriate to their needs.Assessment of the AOP is organised into a number of steps. Guidance on pages 59-62 of the User Handbook is available to facilitate assignment of categories of high, moderate, or low confidence for each consideration. While it is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate, or low confidence should be made. More help

Mechanistic data on KEs and KERs in this AOP are derived from in vitro and in vivo studies in humans and rodents.  The described AOP presents a general mechanism leading to kidney toxicity in preclinical animal species and humans. The described AOP is not limited to a specific life stage or sex.

The sequence of MIE and KEs in this AOP presents a universal mechanism by which nucleos(t)ide analogs are thought to cause toxicity not only in the kidney but also in other organs and tissues, including liver, heart, muscle and the nervous system [1, 3, 4, 7]. The tissue-specificity and severity of the response to a particular nucleos(t)ide analog is considered to be at least in part determined by toxicokinetic factors, most notably active uptake into and efflux from target cells, transport across the mitochondrial membrane and metabolic conversion into the active triphosphate form [5-8]. Nephrotoxicity presents a treatment-limiting toxicity for a number of nucleos(t)ide analogs (e.g. tenofovir, adefovir, cidofovir). Experimental evidence for inhibition of mitochondrial DNA polymerase gamma leading to kidney toxicity as an adverse outcome is comes from in vitro studies, studies in laboratory animals (rats and mice) as well as from reports of patients treated with these compounds. These studies show a strong association between mitochondrial toxicity and antiviral nucleos(t)ide induced nephrotoxicity [9-14], with some studies also demonstrating concomitant mtDNA depletion [9, 11, 12, 15]. 

The causal relationship between the MIE and the downstream KEs is further supported by studies investigating the mechanism of toxicity of nucleos(t)ide analogs in other cells and tissues. For instance, a significant reduction in mtDNA was observed in muscle biopsies of zidovudine-treated HIV positive patients with myopathy as compared non-HIV-patient controls [16].  Studies with isolated human DNA polymerases demonstrate increased sensitivity of Pol gamma to inhibition by antiretroviral nucleotides as compared to nuclear polymerases. Inhibition of mtDNA synthesis and loss of cell number was observed in a T-lymphoid leukemic cell line (Molt-4) treated with several anti-HIV and anti-HBV nucleoside analogs (d4T, 3'-deoxy-2',3'-didehydrothymidine; FLT, 3'-fluoro-3'-deoxythynidine; ddC, 2',3'-dideoxycytidine), which were also identified as potent inhibition of Pol gamma. However, a number of potent Pol gamma inhibitors did not cause significant effects on mtDNA synthesis and cell viability. Based on these findings, the authors concluded that there was no clear quantitative or qualitative correlation between the inhibition of isolated Pol gamma and inhibition of mitochondrial DNA synthesis in vitro, and moreover that these data are not predictive of in vivo toxicity.  It is however important to stress that toxicokinetics, most notably cellular uptake of the tested antivirals, were not considered in this assessment. Thus, it is likely that some of the most potent inhibitors of Pol gamma failed to induce mtDNA depletion and cytotoxicity in this cell model simply because of insufficient cellular uptake [17]. 

Domain of Applicability

The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Biological domain of applicability is informed by the “Description” and “Biological Domain of Applicability” sections of each KE and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex applicability is defined based on the groups of organisms for which the measurements represented by the KEs can feasibly be measured and the functional and regulatory relationships represented by the KERs are operative.The relevant biological domain of applicability of the AOP as a whole will nearly always be defined based on the most narrowly restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the biological domain of applicability of the AOP as a whole would be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE and KER descriptions, the rationale for defining the relevant biological domain of applicability of the overall AOP should be briefly summarised on the AOP page. More help

Mechanistic data on KEs and KERs in this AOP are derived from in vitro and in vivo studies in humans and rodents. The described AOP presents a general mechanism leading to kidney toxicity in preclinical animal species (rats, mice) and humans. The described AOP is not limited to a specific life stage or sex.

Essentiality of the Key Events

An important aspect of assessing an AOP is evaluating the essentiality of its KEs. The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence.The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs.When assembling the support for essentiality of the KEs, authors should organise relevant data in a tabular format. The objective is to summarise briefly the nature and numbers of investigations in which the essentiality of KEs has been experimentally explored either directly or indirectly. See pages 50-51 in the User Handbook for further definitions and clarifications.  More help

MIE / KE

Short name

Support

Essentiality

MIE

Inhibition, Pol gamma

Inhibition of mtDNA Pol gamma by antiviral nucleos(t)ides demonstrated using enzymatic assays [2, 18-20]

high

KE1

Depletion, mtDNA

Loss of mtDNA observed in vitro, in laboratory animals and patients after treatment with antiviral nucleos(t)ides [9, 11, 12, 15, 21]

high

KE2

Dysfunction, mitochondria

Changes in mitochondrial ultrastructure and/or function (e.g. mitochondrial enzyme activities) observed in vitro, in laboratory animals and kidney biopsies of patients after treatment with antiviral nucleos(t)ides [9] [10-14, 21, 22]

high

KE3

Increase, Cytotoxicity

Cytotoxicity of antiviral nucleos(t)ides observed in a range of kidney cell models with the severity depending on cellular uptake [11-14, 21-24]

high

AO

Occurrence, Kidney Toxicity

Nephrotoxicity observed in laboratory animals and patients after treatment with antiviral nucleos(t)ides [9] [10-14, 25-28] [22]

 

Evidence Assessment

The biological plausibility, empirical support, and quantitative understanding from each KER in an AOP are assessed together.  Biological plausibility of each of the KERs in the AOP is the most influential consideration in assessing WoE or degree of confidence in an overall hypothesised AOP for potential regulatory application (Meek et al., 2014; 2014a). Empirical support entails consideration of experimental data in terms of the associations between KEs – namely dose-response concordance and temporal relationships between and across multiple KEs. It is examined most often in studies of dose-response/incidence and temporal relationships for stressors that impact the pathway. While less influential than biological plausibility of the KERs and essentiality of the KEs, empirical support can increase confidence in the relationships included in an AOP. For clarification on how to rate the given empirical support for a KER, as well as examples, see pages 53- 55 of the User Handbook.  More help

Concordance of dose-response relationships

This is still a qualitiative description of the pathway. There is at present no quantitative information on dose-response relationships. Experiments are underway to provide quantitative understanding of dose-response relationships and response-response relationships between upstream and downstream KEs. In establishing dose-response relationships, it needs to be considered that effective excision of nucleotides by proofreading exonuclease of DNA polymerase as a repair mechanism may affect downstream KEs [2].

Temporal concordance among the key events and adverse outcome

The individual KEs are shown to occur prior to or concomitant with the onset of nephrotoxicity.

Strength, consistency, and specificity of association of adverse outcome and initiating event

The scientific evidence on the association between inhibition of DNA Polymerase gamma (MIE) and kidney toxicity (AO) is strong and consistent. The MIE is not specific for kidney toxicity as is considered responsible for a range of adverse effects of antiviral nucleos(t)ide treatment, whereby the site of toxicity appears to be at least in part determined by the toxicokinetics of individual drugs.

Biological plausibility, coherence, and consistency of the experimental evidence

Since antiviral nucleos(t)ide analogs are specifically designed to inhibit (viral) DNA polymerases or reverse transcriptase, off-target effects via interaction of human DNA polymerases are biologically plausible and consistent with the pharmacological MoA. The described AOP is biologically plausible, coherent and supported by experimental data.

Alternative mechanism(s) that logically present themselves and the extent to which they may distract from the postulated AOP

There are no alternative mechanism(s) that logically present themselves, although a contribution of yet undefined off-target effects to the overall AO cannot be excluded.

Uncertainties, inconsistencies and data gaps

This AOP is plausible and consistent with general biological knowledge. Quantitative information on dose response-relationships as well as repsonse-response relationships for upstream and downstream KEs is needed to support its applicability for the development of alternative in vitro tests for nephrotoxicity testing.

Quantitative Understanding

Some proof of concept examples to address the WoE considerations for AOPs quantitatively have recently been developed, based on the rank ordering of the relevant Bradford Hill considerations (i.e., biological plausibility, essentiality and empirical support) (Becker et al., 2017; Becker et al, 2015; Collier et al., 2016). Suggested quantitation of the various elements is expert derived, without collective consideration currently of appropriate reporting templates or formal expert engagement. Though not essential, developers may wish to assign comparative quantitative values to the extent of the supporting data based on the three critical Bradford Hill considerations for AOPs, as a basis to contribute to collective experience.Specific attention is also given to how precisely and accurately one can potentially predict an impact on KEdownstream based on some measurement of KEupstream. This is captured in the form of quantitative understanding calls for each KER. See pages 55-56 of the User Handbook for a review of quantitative understanding for KER's. More help

Quantitative data on KERs between upstream and downstream KE are still lacking.

Considerations for Potential Applications of the AOP (optional)

At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale.To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page or 'Update and continue' to continue editing AOP text sections.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page. More help

The described AOP is intended to provide a mechanistic framework for the development of in vitro bioactivity assays capable of predicting quantitative points of departure for safety assessment with regard to nephrotoxicity. Such assays may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies (e.g.  OECD Guideline 407; OECD Guideline 407) and to aid in the design of new antiviral drugs.

References

List the bibliographic references to original papers, books or other documents used to support the AOP. More help

1.           Lewis, W. and M.C. Dalakas, Mitochondrial toxicity of antiviral drugs. Nat Med, 1995. 1(5): p. 417-22.

2.           Johnson, A.A., et al., Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J Biol Chem, 2001. 276(44): p. 40847-57.

3.           Fontana, R.J., Side effects of long-term oral antiviral therapy for hepatitis B. Hepatology, 2009. 49(5 Suppl): p. S185-95.

4.           Fung, J., et al., Extrahepatic effects of nucleoside and nucleotide analogues in chronic hepatitis B treatment. J Gastroenterol Hepatol, 2014. 29(3): p. 428-34.

5.           Izzedine, H., V. Launay-Vacher, and G. Deray, Antiviral drug-induced nephrotoxicity. American Journal of Kidney Diseases, 2005. 45(5): p. 804-817.

6.           Uwai, Y., et al., Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res, 2007. 24(4): p. 811-5.

7.           Lewis, W., B.J. Day, and W.C. Copeland, Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov, 2003. 2(10): p. 812-22.

8.           Kohler, J.J., et al., Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab Invest, 2011. 91(6): p. 852-8.

9.           Lebrecht, D., et al., Mitochondrial Tubulopathy in Tenofovir Disoproxil Fumarate-Treated Rats. Jaids-Journal of Acquired Immune Deficiency Syndromes, 2009. 51(3): p. 258-263.

10.        Cote, H.C., et al., Exploring mitochondrial nephrotoxicity as a potential mechanism of kidney dysfunction among HIV-infected patients on highly active antiretroviral therapy. Antivir Ther, 2006. 11(1): p. 79-86.

11.        Tanji, N., et al., Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Hum Pathol, 2001. 32(7): p. 734-40.

12.        Kohler, J.J., et al., Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest, 2009. 89(5): p. 513-9.

13.        Herlitz, L.C., et al., Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int, 2010. 78(11): p. 1171-7.

14.        Ramamoorthy, H., P. Abraham, and B. Isaac, Mitochondrial dysfunction and electron transport chain complex defect in a rat model of tenofovir disoproxil fumarate nephrotoxicity. J Biochem Mol Toxicol, 2014. 28(6): p. 246-55.

15.        Kohler, J.J. and S.H. Hosseini, Subcellular renal proximal tubular mitochondrial toxicity with tenofovir treatment. Methods Mol Biol, 2011. 755: p. 267-77.

16.        Arnaudo, E., et al., Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet, 1991. 337(8740): p. 508-10.

17.        Martin, J.L., et al., Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother, 1994. 38(12): p. 2743-9.

18.        Lee, H., J. Hanes, and K.A. Johnson, Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase. Biochemistry, 2003. 42(50): p. 14711-9.

19.        Cherrington, J.M., et al., Kinetic Interaction of the Diphosphates of 9-(2-Phosphonylmethoxyethyl)Adenine and Other Anti-Hiv Active Purine Congeners with Hiv Reverse-Transcriptase and Human DNA Polymerase-Alpha, Polymerase-Beta and Polymerase-Gamma. Antiviral Chemistry & Chemotherapy, 1995. 6(4): p. 217-221.

20.        Naesens, L., et al., HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphonate analogues: A review of their pharmacology and clinical potential in the treatment of viral infections. Antiviral Chemistry & Chemotherapy, 1997. 8(1): p. 1-23.

21.        Zhao, X., et al., Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci Rep, 2017. 7: p. 46344.

22.        Talmon, G., L.D. Cornell, and D.J. Lager, Mitochondrial changes in cidofovir therapy for BK virus nephropathy. Transplant Proc, 2010. 42(5): p. 1713-5.

23.        Zhang, X., et al., Intracellular concentrations determine the cytotoxicity of adefovir, cidofovir and tenofovir. Toxicol In Vitro, 2015. 29(1): p. 251-8.

24.        Nieskens, T.T., et al., A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity. AAPS J, 2016. 18(2): p. 465-75.

25.        Liborio, A.B., et al., Rosiglitazone reverses tenofovir-induced nephrotoxicity. Kidney Int, 2008. 74(7): p. 910-8.

26.        Woodward, C.L.N., et al., Tenofovir-associated renal and bone toxicity. Hiv Medicine, 2009. 10(8): p. 482-487.

27.        Gara, N., et al., Renal tubular dysfunction during long-term adefovir or tenofovir therapy in chronic hepatitis B. Aliment Pharmacol Ther, 2012. 35(11): p. 1317-25.

28.        Vora, S.B., A.W. Brothers, and J.A. Englund, Renal Toxicity in Pediatric Patients Receiving Cidofovir for the Treatment of Adenovirus Infection. J Pediatric Infect Dis Soc, 2017.