This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 757

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Hippocampal anatomy, Altered

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Hippocampal anatomy, Altered
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
brain development hippocampal formation morphological change

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
TPO Inhibition and Altered Neurodevelopment KeyEvent Evgeniia Kazymova (send email) Open for citation & comment WPHA/WNT Endorsed
Nuclear receptor induced TH Catabolism and Developmental Hearing Loss KeyEvent Evgeniia Kazymova (send email) Open for adoption Under Development
NIS and Cognitive Dysfunction KeyEvent Evgeniia Kazymova (send email) Under Development: Contributions and Comments Welcome
Transthyretin interference KeyEvent Allie Always (send email) Under Development: Contributions and Comments Welcome Under Development
TR Antagonism and DNT KeyEvent Evgeniia Kazymova (send email) Under development: Not open for comment. Do not cite Under Development
Inhibition of voltage gate during development is leading to cognitive disorders KeyEvent Arthur Author (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
human Homo sapiens High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
During brain development High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Male High
Female High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

The hippocampus is a major brain region located in the medial temporal lobe in humans and other mammals (West, 1990). Developmentally it is derived from neuronal and glial cells in the neural tube and differentiates in the proencephalon and telencephalon.  The hippocampus is a cortical structure, but only contains 3-layers, distinct from the 6-layered neocortical structures. For this reason, it is known as archicortex or paleocortex meaning old cortex. Within humans, the structure is identified as early as fetal week 13 and matures rapidly until 2 to 3 years of age (Kier et al 1997), with continuing slow growth thereafter until adult ages (Utsunomiya et al., 1999).  In rodents, the hippocampus begins to form in midgestation, with the CA fields forming in advance of the dentate gyrus. Dentate gyrus forms in late gestation with most of its development occurring in the first 2-3 postnatal weeks (Altman and Bayer, 1990a; 1990b).

The structure of the hippocampus has been divided into regions that include CA1 through CA4 and the dentate gyrus. The principal cell bodies of the CA field are pyramidal neurons, those of the dentate gyrus are granule cells. The dentate gyrus forms later in development than the CA fields of the hippocampus. These regions are generally found in all mammalian hippocampi.

The major input pathway to the hippocampus is from the layer 2 neurons of the entorhinal cortex to the dentate gyrus via the perforant path forming the first connection of the trisynaptic loop of the hippocampal circuit. Direct afferents from the dentate gyrus (mossy fibers) then synapse on CA3 pyramidal cells which in turn send their axons (Schaeffer Collaterals) to CA1 neurons to complete the trisynaptic circuit (Figure 1). From the CA fields information then passes through the subiculum entering the fiber pathways of the alveus, fimbria, and fornix and it routed to other areas of the brain (Amaral and Lavenex, 2006). Through the interconnectivity within the hippocampus and its connections to amygdala, septum and cortex, the hippocampus plays a pivotal role in several learning and memory processes, including spatial behaviors. The primary input pathway to the CA regions of the hippocampus is from the septum by way of the fornix and direct input from the amygdala. Reciprocal outputs from the hippocampus back to these regions and beyond also exist.


Trisynaptic Hippocampal Circuitry

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Data in support of this key event have been collected using a wide variety of standard biochemical, histological and anatomical methods (e.g., morphometrics, immunohistochemical staining, in situ hybridization and imaging procedures). Many of methods applied to reveal anatomical abnormalities are routine neurohistopathology procedures similar to those recommended in EPA and OECD developmental neurotoxicity guidelines (US EPA, 1998; OCED, 2007). Subtle cytoarchitectural features depend on more specialized birth dating procedures and staining techniques. It is essential to consider the timing of events during development for detection to occur, as well as the timing for detection (Hevner, 2007; Garman et al., 2001; Zgraggen et al., 2012). Similar techniques used in rodent stydies have been applied to postmortem tissue in humans. 

In humans, structural neuroimaging techniques are used to assess hippocampal volume with an analysis technique known as voxel-based morphometry (VBM). Volume of brain regions is measured by drawing regions of interest (ROIs) on images from brain scans obtained from magnetic resonance imaging (MRI) or positron emission tomography (PET) scans and calculating the volume enclosed. (Mechelli et al., 2005). Similar imaging techniques can be applied in rodent models (Powell et al., 2009; Hasegawa et al., 2010; Pirko et al., 2005; Pirko and Johnson, 2008).

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

The hippocampus is generally similar in structure function across most mammalian species (West, 1990). The vast majority of information on the structure of the hippocampus is from mice, rats and primates including humans.


List of the literature that was cited for this KE description. More help

Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol. 1990a Nov 15;301(3):365-81.

Altman J, Bayer SA. Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J Comp Neurol. 1990b Nov 15;301(3):343-64.

Amaral D, Lavenex P (2006). "Ch 3. Hippocampal Neuroanatomy". In Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J. The Hippocampus Book. Oxford University Press. ISBN 978-0-19-510027-3.

Garman RH, Fix AS, Jortner BS, Jensen KF, Hardisty JF, Claudio L, Ferenc S. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. II: neuropathology. Environ Health Perspect. 2001 Mar;109 Suppl 1:93-100.

Hasegawa M, Kida I, Wada H.  A volumetric analysis of the brain and hippocampus of rats rendered perinatal hypothyroid. Neurosci Lett. 2010 Aug 2;479(3):240-4.

Hevner RF. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J Neuropathol Exp Neurol. 2007 66(2):101-9.

Kier, EL, Kim, JH, Fulbright, K, Bronen, RA. Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR Am J Neuroradiol: 1997, 18(3);525-32.

Mechelli A, Price C, Friston K, Ashburner J (2005) Voxel-Based Morphometry of the Human Brain: Methods and Applications. Curr Med Imaging Rev 1:105-113.

OECD. 2007. OECD guidelines for the testing of chemicals/ section 4: Health effects. Test no. 426: Developmental neurotoxicity study.

Pirko I, Fricke ST, Johnson AJ, Rodriguez M, Macura SI. Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals. NeuroRx. 2005 Apr;2(2):250-64.

Pirko I, Johnson AJ. Neuroimaging of demyelination and remyelination models. Curr Top Microbiol Immunol. 2008; 318:241-66.

Powell MH, Nguyen HV, Gilbert M, Parekh M, Colon-Perez LM, Mareci TH, Montie E. Magnetic resonance imaging and volumetric analysis: novel tools to study the effects of thyroid hormone disruption on white matter development. Neurotoxicology. 2012 Oct;33(5):1322-9.

U.S.EPA. 1998. Health effects guidelines OPPTS 870.6300 developmental neurotoxicity study. EPA Document 712-C-98-239.Office of Prevention Pesticides and Toxic Substances.

Utsunomiya, H., K Takano, M Okazaki, A Mitsudome Development of the temporal lobe in infants and children: analysis by MR-based volumetry. AJNR Am J Neuroradiol: 1999, 20(4);717-23.

West MJ (1990). "Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men". Progress in Brain Research. Progress in Brain Research 83: 13–36.

Zgraggen E, Boitard M, Roman I, Kanemitsu M, Potter G, Salmon P, Vutskits L, Dayer AG, Kiss JZ. Early postnatal migration and development of layer II pyramidal neurons in the rodent cingulate/retrosplenial cortex. Cereb Cortex. 2012 Jan;22(1):144-57.