This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 2069
Title
Chronic ROS leads to Porcupine-induced Wnt secretion and Wnt signaling activation
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
Increases in cellular reactive oxygen species and chronic reactive oxygen species leading to human treatment-resistant gastric cancer | adjacent | Moderate | Moderate | Agnes Aggy (send email) | Open for comment. Do not cite | Under Review |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Homo sapiens | Homo sapiens | Moderate | NCBI |
Sex Applicability
Sex | Evidence |
---|---|
Unspecific | High |
Life Stage Applicability
Term | Evidence |
---|---|
All life stages | Moderate |
Key Event Relationship Description
ROS production causes tissue damage (Gao, Zhou, Lin, Paus, & Yue, 2019). ROS production is involved in Wnt-driven tumorigenesis (Myant et al., 2013). The prolonged ROS induces inflammation leading to carcinogenesis (Vallée & Lecarpentier, 2018).
Injury causes the Porcupine-induced Wnt secretion (Saha et al., 2016).
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
Sustained ROS increase caused by/causes DNA damage, which will alter several signaling pathways including Wnt signaling. Macrophages accumulate into injured tissue to recover the tissue damage, which may be followed by porcupine-induced Wnt secretion. ROS stimulate inflammatory factor production and Wnt/beta-catenin signaling (Vallée & Lecarpentier, 2018).
Empirical Evidence
Incidence concordance
Production of ROS by DNA double-strand break causes tissue damages (Gao et al., 2019).
ROS signaling induces Wnt/beta-catenin signaling (Pérez, Taléns-Visconti, Rius-Pérez, Finamor, & Sastre, 2017).
Uncertainties and Inconsistencies
The balance of ROS signaling is important, and dual effects of ROS should be taken in consideration. The ROS may enhance Wnt/beta-catenin proliferating pathways to promote tumorigenesis, while ROS may disrupt tumor progression by different pro-apoptotic mechanisms (Pérez et al., 2017). It is also known that Wnt signaling induces ROS signaling (Cheung et al., 2016). Wnt/beta-catenin signaling control by ROS needs to be further investigated (Caliceti, Nigro, Rizzo, & Ferrari, 2014).
Known modulating factors
GPX2, an activator of Wnt/beta-catenin signaling, is identified as a key regulator of intracellular H2O2 levels and an inhibitor of apoptosis (Wang et al., 2019).
Quantitative Understanding of the Linkage
Response-response Relationship
ROS induces inflammatory responses (Bhattacharyya, Chattopadhyay, Mitra, & Crowe, 2014). Oxidant induces ROS generation and p38 MAPK activation in macrophages (Conway & Kinter, 2006). ROS induce tissue damage in cardiac myocytes (Miller & Cheung, 2016; Yang et al., 2006).
Time-scale
For the colony formation assay, cells were treated with 400 microM/L H2O2 for 1 week, where the medium was changed every three days (Wang et al., 2019).
Known Feedforward/Feedback loops influencing this KER
The reduction in ROS levels in the human serum albumin-treated cerebral ischemia/reperfusion-induced injury may be mediated by Wnt/beta-catenin signaling (Tang, Shen, Zhang, Yang, & Liu, 2019).
Domain of Applicability
Prolonged ROS induces inflammation and tissue damage in Homo sapiens (Vallée & Lecarpentier, 2018).
References
Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological reviews, 94(2), 329-354. doi:10.1152/physrev.00040.2012
Caliceti, C., Nigro, P., Rizzo, P., & Ferrari, R. (2014). ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology. BioMed research international, 2014, 318714-318714. doi:10.1155/2014/318714
Cheung, E. C., Lee, P., Ceteci, F., Nixon, C., Blyth, K., Sansom, O. J., & Vousden, K. H. (2016). Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes & development, 30(1), 52-63. doi:10.1101/gad.271130.115
Conway, J. P., & Kinter, M. (2006). Dual role of peroxiredoxin I in macrophage-derived foam cells. The Journal of biological chemistry, 281(38), 27991-28001. doi:10.1074/jbc.M605026200
Gao, Q., Zhou, G., Lin, S.-J., Paus, R., & Yue, Z. (2019). How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Experimental dermatology, 28(4), 413-418. doi:10.1111/exd.13846
Miller, B. A., & Cheung, J. Y. (2016). TRPM2 protects against tissue damage following oxidative stress and ischaemia-reperfusion. The Journal of physiology, 594(15), 4181-4191. doi:10.1113/JP270934
Myant, K. B., Cammareri, P., McGhee, E. J., Ridgway, R. A., Huels, D. J., Cordero, J. B., . . . Sansom, O. J. (2013). ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell stem cell, 12(6), 761-773. doi:10.1016/j.stem.2013.04.006
Pérez, S., Taléns-Visconti, R., Rius-Pérez, S., Finamor, I., & Sastre, J. (2017). Redox signaling in the gastrointestinal tract. Free radical biology & medicine, 104, 75-103. doi:10.1016/j.freeradbiomed.2016.12.048
Saha, S., Aranda, E., Hayakawa, Y., Bhanja, P., Atay, S., Brodin, N. P., . . . Pollard, J. W. (2016). Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nature Communications, 7, 13096-13096. doi:10.1038/ncomms13096
Tang, Y., Shen, J., Zhang, F., Yang, F.-Y., & Liu, M. (2019). Human serum albumin attenuates global cerebral ischemia/reperfusion-induced brain injury in a Wnt/β-Catenin/ROS signaling-dependent manner in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 115, 108871-108871. doi:10.1016/j.biopha.2019.108871
Vallée, A., & Lecarpentier, Y. (2018). Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Frontiers in immunology, 9, 745-745. doi:10.3389/fimmu.2018.00745
Wang, Y., Cao, P., Alshwmi, M., Jiang, N., Xiao, Z., Jiang, F., . . . Li, S. (2019). GPX2 suppression of H(2)O(2) stress regulates cervical cancer metastasis and apoptosis via activation of the β-catenin-WNT pathway. OncoTargets and therapy, 12, 6639-6651. doi:10.2147/OTT.S208781
Yang, K. T., Chang, W. L., Yang, P. C., Chien, C. L., Lai, M. S., Su, M. J., & Wu, M. L. (2006). Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death & Differentiation, 13(10), 1815-1826. doi:10.1038/sj.cdd.4401813