This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 2792
Title
Apoptosis leads to Decrease, outgrowth
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
Antagonism of Smoothened receptor leading to orofacial clefting | adjacent | Low | Low | Arthur Author (send email) | Under development: Not open for comment. Do not cite | Under Development |
Decrease, GLI1/2 target gene expression leads to orofacial clefting | adjacent | Low | Low | Agnes Aggy (send email) | Under development: Not open for comment. Do not cite | Under Development |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
mouse | Mus musculus | High | NCBI |
Sex Applicability
Sex | Evidence |
---|---|
Unspecific |
Life Stage Applicability
Term | Evidence |
---|---|
Embryo | High |
Key Event Relationship Description
The development of the face occurs early in embryogenesis and involves precise coordination of multiple tissues. The oropharyngeal membrane appears early in the 4th week of gestation and gives rise to the frontonasal process and the 1st pharyngeal arch. The frontonasal process is derived from the neural crest and in turn gives rise to two medial nasal process and two lateral nasal processes that later fuse and form the intermaxillary process. The pharyngeal arch is derived from mesoderm and the neural crest. It gives rise to two mandibular process and two maxillary processes (Som and Naidich 2013). These processes are comprised of mesenchymal cells from neural crest migration and the craniopharyngeal ectoderm and are coated in an epithelium (Ferguson 1988). The upper lip is formed during weeks 5-7 when the maxillary processes grow towards the midline and fuse intermaxillary process that have formed the philtrum and columella (Warbrick 1960, Kim, Park et al. 2004). The palate develops between week 6-12 from a median palatine process and a pair of lateral palatine processes. The primary palate is formed from the posterior extension of the intermaxillary process. The lateral palatine processes arise as medial mesenchymal processes from both maxillary processes. These processes initially grow inferiorly until the tongue is pulled downwards by the elongation of the maxilla and mandible. Once above the tongue, the lateral processes grow medially until they make contact and fuse (Som and Naidich 2014). For normal facial development and growth coordinated multivariate signaling is required. For example, retinoic acid, BMP, FGF, and SHH signal together to control facial growth (Liu, Rooker et al. 2010). SHH is an important modulator of epithelial-mesenchyme interaction (EMi) during development. SHH has been shown to regulate growth and formation of the palatal shelves prior to elevation and fusion (Rice, Connor et al. 2006). During development, SHH ligand is secreted by the epithelium into the underlying mesenchyme. This causes a gradient of signaling where mesenchyme proximal to the epithelium is exposed to higher concentrations of SHH than more distal cells (Cohen, Kicheva et al. 2015). Disruption of SHH during critical windows of development is believed to work in an EMi dependent, but epithelial-mesenchyme transition (Emt) independent manner. OFCs caused by disruption to SHH are believed to be due to a decrease in cellular proliferation and an increase in apoptosis leading to a decrease in tissue outgrowth and the failure of the facial processes to meet and fuse (Lipinski, Song et al. 2010, Heyne, Melberg et al. 2015).
Evidence Collection Strategy
Pubmed was used as the primary database for evidence collection. Searches are organized by the date and search terms used in the supplementary table. Search results were initially screened through review of the title and abstract for potential for data relating cellular death (apoptosis) and outgrowth. Each selected publication and its’ data were then examined to determine if support or lack thereof existed for this KER. Papers that did not show any data relating to this KER were discarded. The search terms used are organized below in Table 1.
Evidence Supporting this KER
Biological Plausibility
The SHH pathway is known to be associated with cell survival and that disruption of SHH signaling can lead to increased apoptosis. There is a high biological plausibility that increased apoptosis would lead to decreased palatal shelf outgrowth.
Empirical Evidence
- In vitro
- None found in search
- In vivo
- Wnt1-Cre;Smon/c have increased apoptosis in the mandibular arch compared to wild type at E9.5, E 10.5. This is combination with a decrease in proliferation at E11.5 leads to a decrease in outgrowth of the process (Jeong, Mao et al. 2004).
- SHH expressed in thickened palatal epithelium prior to palatal shelf outgrowth (E13.0-14.5) (Rice, Connor et al. 2006)
- SHH is expressed in oral epithelium and shown as a key signal for palatal shelf outgrowth in explant culture (Lan and Jiang 2009).
- Chick embryos exposed to 200ul of 10% ethanol with an additional 20ul of 1% ethanol at stage 9-10 display a reduction in the growth of the frontonasal prominence, hypoplastic branchial arches, and increased apoptosis in cranial neural crest cells. Treatment with antibodies that block SHH signalling had the same impact as ethanol exposure supporting that ethanol exposure reduces shh signalling (Ahlgren, Thakur et al. 2002).
Uncertainties and Inconsistencies
The exact mechanism through which SHH promotes cell survival is not well understood. Further studies are needed to illuminate the mechanism that links SHH signaling with cell survival.
Known modulating factors
Modulating Factor (MF) | MF Specification | Effect(s) on the KER | Reference(s) |
---|---|---|---|
Insufficient evidence |
Quantitative Understanding of the Linkage
The quantitative understanding of this relationship is low. No studies were found to exist to address dose response or time-scale data. Further work is needed to address these questions and create a better understanding of this relationship.
Response-response Relationship
Insufficient evidence
Time-scale
Insufficient evidence
Known Feedforward/Feedback loops influencing this KER
Insufficient evidence
Domain of Applicability
The relationship between an increase in apoptosis and a decrease in palatal shelf outgrowth has been shown in mice models as detailed in the empirical evidence section. The relationship is biologically plausible in human, but to date no specific experiments have addressed this question. The SHH pathway is well understood to be fundamental to proper embryonic development and that aberrant SHH signaling during embryonic development can cause birth defects including orofacial clefts (OFCs). For this reason, this KER is applicable to the embryonic stage with a high level of confidence.
References
Ahlgren, S. C., V. Thakur and M. Bronner-Fraser (2002). "Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure." Proc Natl Acad Sci U S A 99(16): 10476-10481.
Cohen, M., A. Kicheva, A. Ribeiro, R. Blassberg, K. M. Page, C. P. Barnes and J. Briscoe (2015). "Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms." Nature Communications 6(1): 6709.
Ferguson, M. W. (1988). "Palate development." Development 103 Suppl: 41-60.
Heyne, G. W., C. G. Melberg, P. Doroodchi, K. F. Parins, H. W. Kietzman, J. L. Everson, L. J. Ansen-Wilson and R. J. Lipinski (2015). "Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate." PLoS One 10(3): e0120517.
Jeong, J., J. Mao, T. Tenzen, A. H. Kottmann and A. P. McMahon (2004). "Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia." Genes Dev 18(8): 937-951.
Kim, C. H., H. W. Park, K. Kim and J. H. Yoon (2004). "Early development of the nose in human embryos: a stereomicroscopic and histologic analysis." Laryngoscope 114(10): 1791-1800.
Lan, Y. and R. Jiang (2009). "Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth." Development 136(8): 1387-1396.
Lipinski, R. J., C. Song, K. K. Sulik, J. L. Everson, J. J. Gipp, D. Yan, W. Bushman and I. J. Rowland (2010). "Cleft lip and palate results from Hedgehog signaling antagonism in the mouse: Phenotypic characterization and clinical implications." Birth Defects Res A Clin Mol Teratol 88(4): 232-240.
Liu, B., S. M. Rooker and J. A. Helms (2010). "Molecular control of facial morphology." Semin Cell Dev Biol 21(3): 309-313.
Rice, R., E. Connor and D. P. C. Rice (2006). "Expression patterns of Hedgehog signalling pathway members during mouse palate development." Gene Expression Patterns 6(2): 206-212.
Som, P. M. and T. P. Naidich (2013). "Illustrated review of the embryology and development of the facial region, part 1: Early face and lateral nasal cavities." AJNR Am J Neuroradiol 34(12): 2233-2240.
Som, P. M. and T. P. Naidich (2014). "Illustrated review of the embryology and development of the facial region, part 2: Late development of the fetal face and changes in the face from the newborn to adulthood." AJNR Am J Neuroradiol 35(1): 10-18.
Warbrick, J. G. (1960). "The early development of the nasal cavity and upper lip in the human embryo." J Anat 94(Pt 3): 351-362.