Aop: 394

Title

A descriptive title which references both the Molecular Initiating Event and Adverse Outcome.It should take the form “MIE leading to AO”. For example, “Aromatase inhibition leading to reproductive dysfunction” where Aromatase inhibition is the MIE and reproductive dysfunction the AO. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE. More help

Bulky DNA adducts leading to low birth weight

Short name
A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
Bulky DNA adducts leading to low birth weight

Graphical Representation

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (see this page for example). The graphical summary is prepared and uploaded by the user (templates are available) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP Development Workplan. The graphical representation or AOP diagram provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP (for more information please see page 19 of the Users' Handbook).If you already have a graphical representation of your AOP in electronic format, simple save it in a standard image format (e.g. jpeg, png) then click ‘Choose File’ under the “Graphical Representation” heading, which is part of the Summary of the AOP section, to select the file that you have just edited. Files must be in jpeg, jpg, gif, png, or bmp format. Click ‘Upload’ to upload the file. You should see the AOP page with the image displayed under the “Graphical Representation” heading. To remove a graphical representation file, click 'Remove' and then click 'OK.'  Your graphic should no longer be displayed on the AOP page. If you do not have a graphical representation of your AOP in electronic format, a template is available to assist you.  Under “Summary of the AOP”, under the “Graphical Representation” heading click on the link “Click to download template for graphical representation.” A Powerpoint template file should download via the default download mechanism for your browser. Click to open this file; it contains a Powerpoint template for an AOP diagram and instructions for editing and saving the diagram. Be sure to save the diagram as jpeg, jpg, gif, png, or bmp format. Once the diagram is edited to its final state, upload the image file as described above. More help

Authors

List the name and affiliation information of the individual(s)/organisation(s) that created/developed the AOP. In the context of the OECD AOP Development Workplan, this would typically be the individuals and organisation that submitted an AOP development proposal to the EAGMST. Significant contributors to the AOP should also be listed. A corresponding author with contact information may be provided here. This author does not need an account on the AOP-KB and can be distinct from the point of contact below. The list of authors will be included in any snapshot made from an AOP. More help

Elizabeth Huliganga

Point of Contact

Indicate the point of contact for the AOP-KB entry itself. This person is responsible for managing the AOP entry in the AOP-KB and controls write access to the page by defining the contributors as described below. Clicking on the name will allow any wiki user to correspond with the point of contact via the email address associated with their user profile in the AOP-KB. This person can be the same as the corresponding author listed in the authors section but isn’t required to be. In cases where the individuals are different, the corresponding author would be the appropriate person to contact for scientific issues whereas the point of contact would be the appropriate person to contact about technical issues with the AOP-KB entry itself. Corresponding authors and the point of contact are encouraged to monitor comments on their AOPs and develop or coordinate responses as appropriate.  More help
Arthur Author   (email point of contact)

Contributors

List user names of all  authors contributing to or revising pages in the AOP-KB that are linked to the AOP description. This information is mainly used to control write access to the AOP page and is controlled by the Point of Contact.  More help
  • Arthur Author

Status

The status section is used to provide AOP-KB users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. “Author Status” is an author defined field that is designated by selecting one of several options from a drop-down menu (Table 3). The “Author Status” field should be changed by the point of contact, as appropriate, as AOP development proceeds. See page 22 of the User Handbook for definitions of selection options. More help
Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite
This AOP was last modified on June 28, 2021 21:56
The date the AOP was last modified is automatically tracked by the AOP-KB. The date modified field can be used to evaluate how actively the page is under development and how recently the version within the AOP-Wiki has been updated compared to any snapshots that were generated. More help

Revision dates for related pages

Page Revision Date/Time
Bulky DNA adducts June 21, 2021 09:46
N/A, Inadequate DNA repair October 30, 2019 10:07
Increase, Mutations October 25, 2019 13:12
Intrauterine growth restriction June 28, 2021 10:32
Low birth weight June 28, 2021 13:50
Bulky DNA adducts leads to N/A, Inadequate DNA repair June 28, 2021 21:54
Bulky DNA adducts leads to Increase, Mutations June 28, 2021 21:48
N/A, Inadequate DNA repair leads to Increase, Mutations June 03, 2020 23:25
Increase, Mutations leads to Intrauterine growth restriction June 25, 2021 15:24
Intrauterine growth restriction leads to Low birth weight June 25, 2021 15:25
Polycyclic aromatic hydrocarbons (PAHs) February 09, 2017 15:43

Abstract

In the abstract section, authors should provide a concise and informative summation of the AOP under development that can stand-alone from the AOP page. Abstracts should typically be 200-400 words in length (similar to an abstract for a journal article). Suggested content for the abstract includes the following: The background/purpose for initiation of the AOP’s development (if there was a specific intent) A brief description of the MIE, AO, and/or major KEs that define the pathway A short summation of the overall WoE supporting the AOP and identification of major knowledge gaps (if any) If a brief statement about how the AOP may be applied (optional). The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance More help

The accumulation of bulky DNA adducts, due to PAH exposure, during pregnancy is associated with intrauterine growth restriction (Choi et al. 2008; Dejmek et al. 2000) and low birth weight (Langlois et al. 2014; Perera et al. 2003, 2005). Bulky DNA adducts occur when aromatic compounds are metabolically activated and interact with DNA bases. Persistent bulky DNA adducts can be inadequately repaired and become mutations (Liu et al. 2015; Reeves et al. 2011; Yang et al. 2005). An accumulation of mutations can lead to intrauterine growth restriction and ultimately low birth weight. Low birth weight, less than 2500 g or 5.5 lbs is recognized by the OECD as a risk factor for increased risk of death to infants (OECD 2020). Low birth weight is also associated with low oxygen levels (Stoll et al. 2004), infection (Stoll et al. 2002), respiratory function (Barker et al. 1991), neurodevelopmental effects such as cerebral palsy (Vohr et al. 2000; Wilson-Costello et al. 1998), blindness (Stoll et al. 2004), and developmental delay (Stoll et al. 2004). Overall, there is a high biological plausibility, moderate empirical evidence, and low to moderate quantitative understanding of the AOP.

Background (optional)

This optional subsection should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. Examples of potential uses of the optional background section are listed on pages 24-25 of the User Handbook. More help

Summary of the AOP

This section is for information that describes the overall AOP. The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help

Events:

Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a stressor and the biological system) of an AOP. More help
Key Events (KE)
This table summarises all of the KEs of the AOP. This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry acts as a link to the individual KE description page.  More help
Adverse Outcomes (AO)
An AO is a specialised KE that represents the end (an adverse outcome of regulatory significance) of an AOP.  More help
Sequence Type Event ID Title Short name
MIE 1870 Bulky DNA adducts Bulky DNA adducts
KE 155 N/A, Inadequate DNA repair N/A, Inadequate DNA repair
KE 185 Increase, Mutations Increase, Mutations
KE 1871 Intrauterine growth restriction Intrauterine growth restriction
AO 1872 Low birth weight Low birth weight

Relationships Between Two Key Events (Including MIEs and AOs)

TESTINGThis table summarises all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the individual KER description page.To add a key event relationship click on either Add relationship: events adjacent in sequence or Add relationship: events non-adjacent in sequence.For example, if the intended sequence of KEs for the AOP is [KE1 > KE2 > KE3 > KE4]; relationships between KE1 and KE2; KE2 and KE3; and KE3 and KE4 would be defined using the add relationship: events adjacent in sequence button.  Relationships between KE1 and KE3; KE2 and KE4; or KE1 and KE4, for example, should be created using the add relationship: events non-adjacent button. This helps to both organize the table with regard to which KERs define the main sequence of KEs and those that provide additional supporting evidence and aids computational analysis of AOP networks, where non-adjacent KERs can result in artifacts (see Villeneuve et al. 2018; DOI: 10.1002/etc.4124).After clicking either option, the user will be brought to a new page entitled ‘Add Relationship to AOP.’ To create a new relationship, select an upstream event and a downstream event from the drop down menus. The KER will automatically be designated as either adjacent or non-adjacent depending on the button selected. The fields “Evidence” and “Quantitative understanding” can be selected from the drop-down options at the time of creation of the relationship, or can be added later. See the Users Handbook, page 52 (Assess Evidence Supporting All KERs for guiding questions, etc.).  Click ‘Create [adjacent/non-adjacent] relationship.’  The new relationship should be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. To edit a key event relationship, click ‘Edit’ next to the name of the relationship you wish to edit. The user will be directed to an Editing Relationship page where they can edit the Evidence, and Quantitative Understanding fields using the drop down menus. Once finished editing, click ‘Update [adjacent/non-adjacent] relationship’ to update these fields and return to the AOP page.To remove a key event relationship to an AOP page, under Summary of the AOP, next to “Relationships Between Two Key Events (Including MIEs and AOs)” click ‘Remove’ The relationship should no longer be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. More help

Network View

The AOP-Wiki automatically generates a network view of the AOP. This network graphic is based on the information provided in the MIE, KEs, AO, KERs and WoE summary tables. The width of the edges representing the KERs is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. More help

Stressors

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help
Name Evidence Term
Polycyclic aromatic hydrocarbons (PAHs) High

Life Stage Applicability

Identify the life stage for which the KE is known to be applicable. More help
Life stage Evidence
Fetal to Parturition High
Birth to < 1 month High

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens Moderate NCBI

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Sex Evidence
Unspecific High

Overall Assessment of the AOP

This section addresses the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). The goal of the overall assessment is to provide a high level synthesis and overview of the relative confidence in the AOP and where the significant gaps or weaknesses are (if they exist). Users or readers can drill down into the finer details captured in the KE and KER descriptions, and/or associated summary tables, as appropriate to their needs.Assessment of the AOP is organised into a number of steps. Guidance on pages 59-62 of the User Handbook is available to facilitate assignment of categories of high, moderate, or low confidence for each consideration. While it is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate, or low confidence should be made. More help

Domain of Applicability

The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Biological domain of applicability is informed by the “Description” and “Biological Domain of Applicability” sections of each KE and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex applicability is defined based on the groups of organisms for which the measurements represented by the KEs can feasibly be measured and the functional and regulatory relationships represented by the KERs are operative.The relevant biological domain of applicability of the AOP as a whole will nearly always be defined based on the most narrowly restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the biological domain of applicability of the AOP as a whole would be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE and KER descriptions, the rationale for defining the relevant biological domain of applicability of the overall AOP should be briefly summarised on the AOP page. More help

The overall domain of this AOP is mammals that have uteruses and give birth, the AOP is not sex specific. The domain limiting key events are intrauterine growth restriction and low birth weight. Intrauterine growth restriction is limited to mammals that have uteruses and affects the life stages from fetal to parturition and low birth weight is limited to mammals that give birth at the life stage of birth, neither key event is sex specific. While this pathway broadly affects mammals, the majority of studies on this topic are epidemiological studies on humans.

Essentiality of the Key Events

An important aspect of assessing an AOP is evaluating the essentiality of its KEs. The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence.The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs.When assembling the support for essentiality of the KEs, authors should organise relevant data in a tabular format. The objective is to summarise briefly the nature and numbers of investigations in which the essentiality of KEs has been experimentally explored either directly or indirectly. See pages 50-51 in the User Handbook for further definitions and clarifications.  More help

Essentiality of KE2: Inadequate Repair

Inadequate repair of bulky DNA adducts is essential for the occurrence of mutations.

OSU-2 (human fibroblast) cells with varying efficacies of p53 (wild type, mutant, and null) were exposed to BPDE for 30 min (Wani et al., 2000)

  • Bulky DNA adducts were measured using immunoslot blot assay after exposure to 0, 0.3, 0.6, 1.2 uM BPDE. A linear dose response was observed and the number of adducts observed no difference between varying efficacies of p53
  • Bulky DNA adducts were then measured using immunoslot blot assay for 0, 2.5, 5, 8 and 24 hours after exposure.
    • In the wild type p53 sample, 40% of adducts remained at 24 hours
    • In the mutant p53 sample, 50% of adducts remained at 24 hours
    • In the null p53 sample, 60% of adducts remained at 24 hours
  • These results indicate that bulky DNA adducts can persist even 24 hours after a relatively short (30 min) exposure, and that with more a effective p53 gene, there was more effective repair of the lesions. Thus inadequate repair is essential to the occurrence of mutations due to bulky DNA adducts

HeLa and CHO cells treated with BPDE (Fischer et al. 2018)

  • Bulky DNA adducts in HeLa cells were measured after a 1 hour exposure with immunofluorescence (1 uM, 20 uM BPDE) and slot blot analysis (0.5 uM, 1 uM, 10 uM BPDE). Results demonstrated a dose response with both methods.
  • Mutations in CHO cells were measured after a 1-hour exposure to 0, 0.01 uM, 0.05 uM, 0.1 uM, 0.2 uM, 0.5 uM BPDE with and without PAR inhibitor ABT888. A linear dose response was observed in both conditions. There was a significantly increased mutations in samples of the same dose that were PAR inhibited compared to those that were no inhibited.
  • PAR facilitates the recruitment and assembly of DNA repair factors, with the inhibition of PAR the repair process is impeded. These results suggest that without proper repair there is an increase in mutations due to bulky DNA adducts.

Evidence Assessment

The biological plausibility, empirical support, and quantitative understanding from each KER in an AOP are assessed together.  Biological plausibility of each of the KERs in the AOP is the most influential consideration in assessing WoE or degree of confidence in an overall hypothesised AOP for potential regulatory application (Meek et al., 2014; 2014a). Empirical support entails consideration of experimental data in terms of the associations between KEs – namely dose-response concordance and temporal relationships between and across multiple KEs. It is examined most often in studies of dose-response/incidence and temporal relationships for stressors that impact the pathway. While less influential than biological plausibility of the KERs and essentiality of the KEs, empirical support can increase confidence in the relationships included in an AOP. For clarification on how to rate the given empirical support for a KER, as well as examples, see pages 53- 55 of the User Handbook.  More help

KER

Summary of Bio. Plausibility Evidence*

WOE call

KER1

Bulky adducts lead to Inadequate DNA repair

Persistent bulky DNA adducts interfere with normal NER repair processes (Liu et al. 2015; Reeves et al. 2011; Yang et al. 2005)

High

KER2

Inadequate repair leads to increase in mutations

High

KER3

Increase in mutations leads to Intrauterine growth restriction

Low

KER 4

Intrauterine growth restriction leads to low birth weight

High

KER 5 (non-adjacent)

Bulky DNA adducts lead to an increase in mutations

There are numerous reviews that describes the relationship between bulky DNA adducts and mutations (Alexandrov et al. 2002; Chen et al. 2008; Veglia, Matullo, and Vineis 2003; Yagi et al. 2017). Bulky DNA adducts preferentially pair with an erroneous base, resulting in a mutation, the mutation that results depends on the specific bulky DNA adduct that occurs.

High

KER

Summary of Empirical Evidence*

WOE call

KER1

Bulky adducts lead to Inadequate DNA repair

Dose, temporal and incidence concordant evidence was available in multiple cell lines, all treated with BPDE.

Moderate

KER2

Inadequate repair leads to increase in mutations

High

KER3

Increase in mutations leads to Intrauterine growth restriction

Low

KER 4

Intrauterine growth restriction leads to low birth weight

Moderate

KER 5 (non-adjacent)

Bulky DNA adducts lead to an increase in mutations

Dose and temporal concordant evidence in cell lines as well as two organisms (humans and mice) was available for B(a)P and it’s metabolites. Incidence concordance was not found due to the higher incidence of mutations than bulky DNA adduct in controls and in all dose groups.

High

KER

Summary of Quantitative Understanding*

WOE call

KER1

Bulky adducts lead to Inadequate DNA repair

Repair efficiency of bulky DNA adducts depends on cell type and is therefore difficult to quantify overall.

Low

KER2

Inadequate repair leads to increase in mutations

Moderate

KER3

Increase in mutations leads to Intrauterine growth restriction

Low

KER 4

Intrauterine growth restriction leads to low birth weight

Moderate

KER 5 (non-adjacent)

Bulky DNA adducts lead to an increase in mutations

There is a quantitative understanding of the relationship for select specific lesions. 50% of the aristolochic acid lesion dA-AAI will lead to a A to T transversion and the presence of a BPDE-dG adduct is most likely to lead to a G to T transversion.

Moderate

Quantitative Understanding

Some proof of concept examples to address the WoE considerations for AOPs quantitatively have recently been developed, based on the rank ordering of the relevant Bradford Hill considerations (i.e., biological plausibility, essentiality and empirical support) (Becker et al., 2017; Becker et al, 2015; Collier et al., 2016). Suggested quantitation of the various elements is expert derived, without collective consideration currently of appropriate reporting templates or formal expert engagement. Though not essential, developers may wish to assign comparative quantitative values to the extent of the supporting data based on the three critical Bradford Hill considerations for AOPs, as a basis to contribute to collective experience.Specific attention is also given to how precisely and accurately one can potentially predict an impact on KEdownstream based on some measurement of KEupstream. This is captured in the form of quantitative understanding calls for each KER. See pages 55-56 of the User Handbook for a review of quantitative understanding for KER's. More help

Considerations for Potential Applications of the AOP (optional)

At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale.To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page or 'Update and continue' to continue editing AOP text sections.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page. More help

References

List the bibliographic references to original papers, books or other documents used to support the AOP. More help

Choi, Hyunok et al. 2008. “Prenatal Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Risk of Intrauterine Growth Restriction.” Environmental Health Perspectives 116(5): 658–65.

Dejmek, Jan et al. 2000. “The Impact of Polycyclic Aromatic Hydrocarbons and Fine Particles on Pregnancy Outcome.” Environmental Health Perspectives 108(12): 1159–64.

Langlois, Peter H. et al. 2014. “Maternal Occupational Exposure to Polycyclic Aromatic Hydrocarbons and Small for Gestational Age Offspring.” Occupational and Environmental Medicine 71(8): 529–35.

Liu, Zhi et al. 2015. “Erratum: Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function (PLoS ONE (2015) 10:9 (E0137124) DOI:10.1371/Journal.Pone.0137124).” PLoS ONE 10(10): 1–26.

Perera, Frederica P. et al. 2003. “Effects of Transplacental Exposure to Environmental Pollutants on Birth Outcomes in a Multiethnic Population.” Environmental Health Perspectives 111(2): 201–5.

Perera, Frederica P. et al. 2005. “Relationships among Polycyclic Aromatic Hydrocarbon-DNA Adducts, Proximity to the World Trade Center, and Effects on Fetal Growth.” Environmental Health Perspectives 113(8): 1062–67.

Reeves, Dara A. et al. 2011. “Resistance of Bulky DNA Lesions to Nucleotide Excision Repair Can Result from Extensive Aromatic Lesion-Base Stacking Interactions.” Nucleic Acids Research 39(20): 8752–64.

Stoll, Barbara J. et al. 2002. “Late-Onset Sepsis in Very Low Birth Weight Neonates: The Experience of the NICHD Neonatal Research Network.” Pediatrics 110(2): 285–91.

Stoll, Barbara J. et al. 2004. “Neurodevelopmental and Growth Impairment among Extremely Low-Birth-Weight Infants with Neonatal Infection.” Journal of the American Medical Association 292(19): 2357–65.

Yang, Zhengguan, Laureen C Colis, Ashis K Basu, and Yue Zou. 2005. “Recognition and Incision of Gamma-Radiation-Induced Cross-Linked Guanine-Thymine Tandem Lesion G[8,5-Me]T by UvrABC Nuclease.” Chemical research in toxicology 18(9): 1339–46. http://www.ncbi.nlm.nih.gov/pubmed/16167825.