Aop: 21


Each AOP should be given a descriptive title that takes the form “MIE leading to AO”. For example, “Aromatase inhibition [MIE] leading to reproductive dysfunction [AO]” or “Thyroperoxidase inhibition [MIE] leading to decreased cognitive function [AO]”. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE. More help

Aryl hydrocarbon receptor activation leading to early life stage mortality, via increased COX-2

Short name
A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
AhR mediated mortality, via COX-2

Graphical Representation

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (see this page for example). The graphical summary is prepared and uploaded by the user (templates are available) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP Development Workplan. The graphical representation or AOP diagram provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP (for more information please see page 19 of the Users' Handbook).If you already have a graphical representation of your AOP in electronic format, simple save it in a standard image format (e.g. jpeg, png) then click ‘Choose File’ under the “Graphical Representation” heading, which is part of the Summary of the AOP section, to select the file that you have just edited. Files must be in jpeg, jpg, gif, png, or bmp format. Click ‘Upload’ to upload the file. You should see the AOP page with the image displayed under the “Graphical Representation” heading. To remove a graphical representation file, click 'Remove' and then click 'OK.'  Your graphic should no longer be displayed on the AOP page. If you do not have a graphical representation of your AOP in electronic format, a template is available to assist you.  Under “Summary of the AOP”, under the “Graphical Representation” heading click on the link “Click to download template for graphical representation.” A Powerpoint template file should download via the default download mechanism for your browser. Click to open this file; it contains a Powerpoint template for an AOP diagram and instructions for editing and saving the diagram. Be sure to save the diagram as jpeg, jpg, gif, png, or bmp format. Once the diagram is edited to its final state, upload the image file as described above. More help


List the name and affiliation information of the individual(s)/organisation(s) that created/developed the AOP. In the context of the OECD AOP Development Workplan, this would typically be the individuals and organisation that submitted an AOP development proposal to the EAGMST. Significant contributors to the AOP should also be listed. A corresponding author with contact information may be provided here. This author does not need an account on the AOP-KB and can be distinct from the point of contact below. The list of authors will be included in any snapshot made from an AOP. More help

Jon Doering, Ph.D., National Research Council, US EPA Mid-Continent Ecology Division, Duluth, MN, USA, (doering.jonathon[at]

Prof. Markus Hecker, Ph.D. University of Saskatchewan, Saskatoon, Saskatchewan, Canada, (markus.hecker[at]

Dan Villeneuve, Ph.D., US EPA Mid-Continent Ecology Division, Duluth, MN, USA (villeneuve.dan[at]

Prof. Xiaowei Zhang, Ph.D., Nanjing University, School of the Environment, Nanjing, China (Zhangxw[at]

Point of Contact

Indicate the point of contact for the AOP-KB entry itself. This person is responsible for managing the AOP entry in the AOP-KB and controls write access to the page by defining the contributors as described below. Clicking on the name will allow any wiki user to correspond with the point of contact via the email address associated with their user profile in the AOP-KB. This person can be the same as the corresponding author listed in the authors section but isn’t required to be. In cases where the individuals are different, the corresponding author would be the appropriate person to contact for scientific issues whereas the point of contact would be the appropriate person to contact about technical issues with the AOP-KB entry itself. Corresponding authors and the point of contact are encouraged to monitor comments on their AOPs and develop or coordinate responses as appropriate.  More help
Allie Always   (email point of contact)


List user names of all  authors contributing to or revising pages in the AOP-KB that are linked to the AOP description. This information is mainly used to control write access to the AOP page and is controlled by the Point of Contact.  More help
  • Markus Hecker
  • Jon Doering
  • Dan Villeneuve
  • Allie Always


The status section is used to provide AOP-KB users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. “Author Status” is an author defined field that is designated by selecting one of several options from a drop-down menu (Table 3). The “Author Status” field should be changed by the point of contact, as appropriate, as AOP development proceeds. See page 22 of the User Handbook for definitions of selection options. More help
Author status OECD status OECD project SAAOP status
Open for citation & comment WPHA/WNT Endorsed 1.27 Included in OECD Work Plan
This AOP was last modified on May 08, 2022 11:33
The date the AOP was last modified is automatically tracked by the AOP-KB. The date modified field can be used to evaluate how actively the page is under development and how recently the version within the AOP-Wiki has been updated compared to any snapshots that were generated. More help

Revision dates for related pages

Page Revision Date/Time
Activation, AhR March 22, 2018 14:00
dimerization, AHR/ARNT September 16, 2017 10:14
Altered, Cardiovascular development/function September 16, 2017 10:14
Increase, COX-2 expression March 20, 2018 16:33
Increase, Early Life Stage Mortality March 22, 2018 10:23
Activation, AhR leads to Increase, Early Life Stage Mortality April 14, 2019 15:17
Activation, AhR leads to dimerization, AHR/ARNT March 22, 2018 11:02
dimerization, AHR/ARNT leads to Increase, COX-2 expression May 09, 2017 16:30
Increase, COX-2 expression leads to Altered, Cardiovascular development/function March 28, 2018 13:24
Altered, Cardiovascular development/function leads to Increase, Early Life Stage Mortality March 23, 2018 14:29
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) February 09, 2017 14:32


In the abstract section, authors should provide a concise and informative summation of the AOP under development that can stand-alone from the AOP page. Abstracts should typically be 200-400 words in length (similar to an abstract for a journal article). Suggested content for the abstract includes the following: The background/purpose for initiation of the AOP’s development (if there was a specific intent) A brief description of the MIE, AO, and/or major KEs that define the pathway A short summation of the overall WoE supporting the AOP and identification of major knowledge gaps (if any) If a brief statement about how the AOP may be applied (optional). The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance More help

This adverse outcome pathway details the linkage between activation of the aryl hydrocarbon receptor (AhR) and early life stage mortality in oviparous vertebrates. This AOP can be initiated by a range of planar aromatic hydrocarbons, but is best known as the target of dioxin-like compounds (DLCs). These planar compounds are able to bind to the AhR causing heterodimerization with the aryl hydrocarbon nuclear translocator (ARNT) and interaction with dioxin-responsive elements on the DNA causing an up-regulation in dioxin responsive genes. Hundreds to thousands of genes are regulated, either directly or indirectly, by the AhR. One dioxin-responsive gene is cyclooxygenase 2 (COX-2) which has roles in development of the cardiovascular system. Up-regulation in expression of COX-2 causes alteration in cardiovascular development and function which results in reduced heart pumping efficiency, reduced blood flow, and eventual cardiac collapse and death. Comparable apical manifestations of activation of the AhR have been recorded across freshwater and marine teleost and non-teleost fishes, as well as birds. Therefore, this AOP might be broadly applicable across oviparous vertebrate taxa. Despite conservation in the AOP across taxa, great differences in sensitivity to perturbation exist both among and within taxonomic groups. Therefore, this AOP has utility in support of application toward the mechanistic understanding of adverse effects of chemicals that act as agonists of the AhR, particularly with regard to cross-chemical, cross-species, and cross-taxa extrapolation. 

In general, biological plausibility of this AOP is strong based heavily on evidence collected from zebrafish (Danio rerio) through mechanistic investigations by use of targeted knockdown of AhR, ARNT, or COX-2 and through use of selective agonists and antagonists of COX-2. Quantitative understanding is largely limited to the indirect KER between AhR activation and early life stage mortality.

Activation of the AhR causes pleotropic responses, including interaction with multiple potential target genes such as CYP1A, Sox9b, and HIF1a/VEGF. Therefore, it is a challenge to elucidate the precise series of key events which link activation of the AhR to early life stage mortality. Because of this uncertainty, other AOPs, such as through the HIF1a/VEGF signalling pathway (AOP 150), have also been developed. These other AOPs likely occur simultaneously with COX-2 to cause altered cardiovascular development and function leading to early life stage mortality.

Background (optional)

This optional subsection should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. Examples of potential uses of the optional background section are listed on pages 24-25 of the User Handbook. More help
  • The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor in the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) family of proteins (Okey 2007). The AhR is a highly conserved and ancient protein with homologs having been identified in most major animal groups, apart from the most ancient lineages, such as sponges (Porifera) (Hahn et al 2002).
  • Investigations of invertebrates possessing early homologs of the AhR suggest that the AhR evolutionarily functioned in regulation of the cell cycle, cellular proliferation and differentiation, and cell-to-cell communications (Hahn et al 2002). However, critical functions in angiogenesis, regulation of the immune system, neuronal processes, metabolism, development of the heart and other organ systems, and detoxification have emerged sometime in early vertebrate evolution (Duncan et al 1998; Lahvis and Bradfield 1998; Emmons et al 1999).
  • Activation of the AhR by anthropogenic pollutants that act as agonists can result in a range of adverse biological effects. These effects can include hepatotoxicity, histological lesions, hemopoiesis, suppression of immune responses and healing, impaired reproductive and endocrine processes, teratogenesis, carcinogenesis, wasting syndrome, and mortality (Kleeman et al 1988; Spitsbergen et al 1986; Walter et al 2000; Giesy et al 2002; Spitsbergen et al 1988a; 1988b).
  • Despite the AhR being a highly conserved protein, differences in relative sensitivity to adverse effects both among and within vertebrate taxa are greater than 1000-fold (Cohen-Barnhouse et al 2011; Doering et al 2013; Hengstler et al 1999; Korkalainen et al 2001).
  • Differences in binding affinity and transactivation of the AhR have been implicated as a key mechanism contributing to differences in sensitivity to agonists of the AhR among species and taxa. However, the precise mechanisms are not fully understood for all taxa.
  • High-throughput, next-generation ‘OMICs’ technologies have identified hundreds to thousands of different genes that are regulated, either directly or indirectly, by the AhR (Brinkmann et al 2016; Doering et al 2016; Huang et al 2014; Li et al 2013; Whitehead et al 2010). These genes include Phase I and Phase II biotransformation enzymes, such as cytochrome P450 1A (CYP1A). Expressions and activities of CYP1A are routinely used as biomarkers of exposure to anthropogenic pollutants that act as agonists of the AhR (Whyte et al 2008).
  • One gene which is regulated by AhR is cyclooxygenase-2 (COX-2) which is known to have roles in development of the heart in vertebrates (Dong et al 2010; Teraoka et al 2008; 2014). AhR-mediated dysregulation of COX-2 is associated with altered cardiovascular development, decreased blood flow, and cardiac failure causing mortality in early life stages of fish and birds (Dong et al 2010; Teraoka et al 2008; 2014).
  • Exposure to mixtures of agonists of the AhR during the 1950’s, 1960’s, and 1970’s has been implicated in early life stage mortality of Lake Ontario lake trout (Salvelinus namaycush) leading to population collapse (Cook et al 2003). However, populations of mummichog (Fundulus heteroclitus) and Atlantic tomcod (Microgadus tomcod) exposed to lethal concentrations of agonists of the AhR have evolved tolerance through several mechanisms which has protected against population collapse (Nacci et al 2010; Wirgin et al 2011).

Summary of the AOP

This section is for information that describes the overall AOP. The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help


Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a stressor and the biological system) of an AOP. More help
Key Events (KE)
This table summarises all of the KEs of the AOP. This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry acts as a link to the individual KE description page.  More help
Adverse Outcomes (AO)
An AO is a specialised KE that represents the end (an adverse outcome of regulatory significance) of an AOP.  More help
Sequence Type Event ID Title Short name
1 MIE 18 Activation, AhR Activation, AhR
2 KE 944 dimerization, AHR/ARNT dimerization, AHR/ARNT
3 KE 1269 Increase, COX-2 expression Increase, COX-2 expression
4 KE 317 Altered, Cardiovascular development/function Altered, Cardiovascular development/function
5 KE 947 Increase, Early Life Stage Mortality Increase, Early Life Stage Mortality

Relationships Between Two Key Events (Including MIEs and AOs)

This table summarises all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the individual KER description page.To add a key event relationship click on either Add relationship: events adjacent in sequence or Add relationship: events non-adjacent in sequence.For example, if the intended sequence of KEs for the AOP is [KE1 > KE2 > KE3 > KE4]; relationships between KE1 and KE2; KE2 and KE3; and KE3 and KE4 would be defined using the add relationship: events adjacent in sequence button.  Relationships between KE1 and KE3; KE2 and KE4; or KE1 and KE4, for example, should be created using the add relationship: events non-adjacent button. This helps to both organize the table with regard to which KERs define the main sequence of KEs and those that provide additional supporting evidence and aids computational analysis of AOP networks, where non-adjacent KERs can result in artifacts (see Villeneuve et al. 2018; DOI: 10.1002/etc.4124).After clicking either option, the user will be brought to a new page entitled ‘Add Relationship to AOP.’ To create a new relationship, select an upstream event and a downstream event from the drop down menus. The KER will automatically be designated as either adjacent or non-adjacent depending on the button selected. The fields “Evidence” and “Quantitative understanding” can be selected from the drop-down options at the time of creation of the relationship, or can be added later. See the Users Handbook, page 52 (Assess Evidence Supporting All KERs for guiding questions, etc.).  Click ‘Create [adjacent/non-adjacent] relationship.’  The new relationship should be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. To edit a key event relationship, click ‘Edit’ next to the name of the relationship you wish to edit. The user will be directed to an Editing Relationship page where they can edit the Evidence, and Quantitative Understanding fields using the drop down menus. Once finished editing, click ‘Update [adjacent/non-adjacent] relationship’ to update these fields and return to the AOP page.To remove a key event relationship to an AOP page, under Summary of the AOP, next to “Relationships Between Two Key Events (Including MIEs and AOs)” click ‘Remove’ The relationship should no longer be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. More help

Network View

The AOP-Wiki automatically generates a network view of the AOP. This network graphic is based on the information provided in the MIE, KEs, AO, KERs and WoE summary tables. The width of the edges representing the KERs is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. More help


The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help

Life Stage Applicability

Identify the life stage for which the KE is known to be applicable. More help
Life stage Evidence
Embryo High
Development High

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
zebrafish Danio rerio High NCBI
medaka Oryzias latipes High NCBI
Gallus gallus Gallus gallus High NCBI

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Sex Evidence
Unspecific High

Overall Assessment of the AOP

This section addresses the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). The goal of the overall assessment is to provide a high level synthesis and overview of the relative confidence in the AOP and where the significant gaps or weaknesses are (if they exist). Users or readers can drill down into the finer details captured in the KE and KER descriptions, and/or associated summary tables, as appropriate to their needs.Assessment of the AOP is organised into a number of steps. Guidance on pages 59-62 of the User Handbook is available to facilitate assignment of categories of high, moderate, or low confidence for each consideration. While it is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate, or low confidence should be made. More help

Assessment of WoE calls:

Activation, AhR leads to dimerization, AHR/ARNT: High

Rationale: The call of 'High' is based on overwhelming empirical evidence in numerous species of mammals, birds, amphibians, and fishes. Further, because of overwhelming evidence of essentiality based on targeted knockdown/knockout studies. No uncertainties or inconsistencies are known which affect the WoE call.

Dimerization, AHR/ARNT leads to increase, COX-2 expression: High

Rationale: The call of "High" is based on convincing empirical evidence in three species (two fish and one bird). Further, because of convincing biological plausibility based on identification of dioxin-response elements in the promoter region of COX-2. Uncertainties and inconsistencies are only related to lack of any information on species outside of the three model species that have been investigated.

Increase, COX-2 expression leads to altered, cardiovascular development/function: Moderate

Rationale: The call of "Moderate" is based on overwhelming empirical evidence and evidence of essentiality in three species (two fish and one bird) based on studies using targeted knockdown of genes and selective agonists/antagonists. However, a lack of information on the role of COX-2 in cardiovascular development/function makes biological plausibility questionable at this time. Further, there is some uncertainty associated with pleiotropic effects of AhR activation and the high probability of multiple mechanisms acting concurrently to cause altered cardiovascular development/function.

Altered, cardiovascular development/function leads to increase, early life stage mortality; High

Rationale: The call of "High" is based on overwhelming empirical evidence and biological plausibility in numerous species of mammals, birds, and fish. There are no known uncertainties or inconsistencies at this time.

Activation, AhR leads to increase, early life stage mortality: High

Rationale: The call of "High" is based on overwhelming empirical evidence and evidence of essentiality in numerous species of mammals, birds, amphibians, and fishes using regression analysis and targeted knockdown/knockout of AhR. There are no known uncertainties of inconsistences at this time.

Domain of Applicability

The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Biological domain of applicability is informed by the “Description” and “Biological Domain of Applicability” sections of each KE and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex applicability is defined based on the groups of organisms for which the measurements represented by the KEs can feasibly be measured and the functional and regulatory relationships represented by the KERs are operative.The relevant biological domain of applicability of the AOP as a whole will nearly always be defined based on the most narrowly restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the biological domain of applicability of the AOP as a whole would be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE and KER descriptions, the rationale for defining the relevant biological domain of applicability of the overall AOP should be briefly summarised on the AOP page. More help

Sex: This AOP is only applicable to early life stages prior to sexual differentiation.

Life stages: This AOP is only applicable starting from embryonic development. In zebrafish, this critical window extends from fertilization to approximately 24 hours post fertilization (hpf) (Belair et al 2001; Goldstone & Stegeman 2008).

Taxonomic: The specific characteristics of altered cardiovascular development and function vary to some degree among taxonomic groups of vertebrates.

This AOP is applicable to:

  • All teleost and non-teleost fishes that have been investigated as embryos so far (Buckler et al 2015; Doering et al 2013; Elonen et al 1998; Johnson et al 1998; Park et al 2014; Tillitt et al 2016; Toomey et al 2001; Walker et al 1991; Yamauchi et al 2006; Zabel et al 1995).
  • All birds (Canga et al 1993; Cohen-Barnhouse et al 2011; Fujisawa et al 2014; Heid et al 2001; Ivnitski et al 2001; Walker & Catron 2000). However, some details of the AOP might be different in birds as cyclooxygenase-2 (COX-2) is believed to be up-regulated through non-genomic mechanisms in these taxa based on investigations in chicken (Gallus gallus) (Fujisawa et al 2014).
  • Amphibians and reptiles have insufficient mechanistic and early life stage mortality information to demonstrate applicability at this time. However, amphibians and reptiles express AhRs that are activated by agonists in a manner consistent with other vertebrates and express AhRs during embryonic development (Lavine et al 2005; Shoots et al 2015; Ohi et al 2003; Oka et al 2016). However, altered cardiovascular development and function and early life stage mortality have not been observed at any investigated concentration of DLC in amphibians studied to date (Jung et al 1997). This tolerance is believed to result from AhRs of amphibians having very low affinity for agonists (Lavine et al 2005; Shoots et al 2015). Therefore, it is acknowledged that this AOP is likely to be applicable to reptiles. However, it might not be applicable to amphibians due to their extreme tolerance to activation of the AhR.
  • Cartilaginous fishes (Chondrichthyes) have insufficient mechanistic and early life stage mortality information to demonstrate applicability at this time. However, sharks and rays are known to express AhRs that are structurally comparable to AhRs of teleost fishes (Hahn 2002). Sharks and rays have also been shown to respond to exposure to agonists of the AhR through responses that are comparable to teleost fishes, specifically through induction of CYP1A (Hahn et al 1998). Therefore, it is acknowledged that this AOP is likely to be applicable to Chondrichthyes.

This AOP is not applicable to:

  • Mammals because the cause of mortality of the young is primarily a result of wasting syndrome and not necessarily altered cardiovascular development and function (Kopf & Walker 2009). Further, studies of CYP1A1 and CYP1A2 null mice (Mus musculus) demonstrate that wasting syndrome and mortality are mediated by CYP1A1 in mammals (Uno et al 2004).
  • Invertebrates because AhRs of invertebrates have less diverse functionalities relative to vertebrates, AhRs of most invertebrates likely do not bind agonists that represent anthropogenic pollutants, and no AhR-mediated, critical adverse effects are known in invertebrates as a result of exposure to AhR agonists (Hahn 2002; Hahn et al 1994).
  • Jawless fishes, such as lamprey (Petromyzontiformes) and hagfish (Myxiniformes), because of a lack of measurable AhR-mediated responses (Hahn et al 1998). Although additional information is necessary for this taxa, it is currently acknowledged that this AOP is likely not applicable to jawless fishes.

Essentiality of the Key Events

An important aspect of assessing an AOP is evaluating the essentiality of its KEs. The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence.The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs.When assembling the support for essentiality of the KEs, authors should organise relevant data in a tabular format. The objective is to summarise briefly the nature and numbers of investigations in which the essentiality of KEs has been experimentally explored either directly or indirectly. See pages 50-51 in the User Handbook for further definitions and clarifications.  More help

Support for essentiality for key events in the AOP was provided by a series of knockdown and targeted agonist and antagonist experiments. These investigations were conducted mainly with zebrafish as the model species and TCDD as the model agonist of the AhR.

 Rationale for essentiality calls:

  • AhR, activation: [Strong] Knockdown of AhR prevents TCDD induced alteration in cardiovascular development and function (Clark et al 2010; Hanno et al 2010; Karchner et al 1999; Prasch et al 2003; Van Tiem & Di Giulio 2011).
  • AhR/ARNT, dimerization: [Strong] Knockdown of ARNT prevents TCDD induced alteration in cardiovascular development and function (Antkiewicz et al 2006; Prasch et al 2004). Depletion of ARNT lessens or prevents TCDD induced alteration in cardiovascular development and function (Prasch et al 2004).
  • COX-2, increase: [Strong] Knockdown of COX-2 and selective antagonists of COX-2 prevent TCDD induced alteration in cardiovascular development and function (Dong et al 2010; Teraoka et al 2008; 2014). COX-2 inducers that are not agonists of the AhR cause altered cardiovascular development and function that is consistent with activation of the AhR (Huang et al 2007). Knockdown of and selective antagonists of thromboxane A synthase 1 (CYP5A), which is down-stream of COX-2 in the prostaglandin synthesis pathway, prevents TCDD induced alteration in cardiovascular development and function (Teraoka et al 2008). Exposure to the substrate for COX-2, arachidonic acid, causes an up-regulation in COX-2 and altered cardiovascular development and function that is consistent with exposure to TCDD (Dong et al 2010).
  • Cardiovascular development and function, altered: [Strong] Isosmotic rearing solution prevents yolk sac edema, but has no effect on TCDD induced alteration in cardiovascular development and function or mortality (Hill et al 2004). This indicates that mortality is not caused by yolk sac edema. Knockdown of cytochrome P450 1A (CYP1A) or injection with antioxidants decreases oxidative stress but has no effect on TCDD induced alteration in cardiovascular development and function or mortality (Carney et al 2004; Scott et al 2011). This is suggestive that mortality is not caused by oxidative stress. Exposure to agonists of the AhR post-heart development lessens or prevents alteration in cardiovascular development, decreased blood flow, and cardiac failure (Carney et al 2004; Lanham et al 2012). Exposure to agonists of the AhR post-heart development dramatically reduces mortality (Carney et al 2004; Lanham et al 2012). This suggests that mortality is caused by circulatory failure as a result of cardiovascular teratogenenesis. Concentrations of DLCs tested in amphibians studied to date were not sufficient to cause altered cardiovascular development or function and no increase in mortality was observed (Jung et al 1997).

Evidence Assessment

The biological plausibility, empirical support, and quantitative understanding from each KER in an AOP are assessed together.  Biological plausibility of each of the KERs in the AOP is the most influential consideration in assessing WoE or degree of confidence in an overall hypothesised AOP for potential regulatory application (Meek et al., 2014; 2014a). Empirical support entails consideration of experimental data in terms of the associations between KEs – namely dose-response concordance and temporal relationships between and across multiple KEs. It is examined most often in studies of dose-response/incidence and temporal relationships for stressors that impact the pathway. While less influential than biological plausibility of the KERs and essentiality of the KEs, empirical support can increase confidence in the relationships included in an AOP. For clarification on how to rate the given empirical support for a KER, as well as examples, see pages 53- 55 of the User Handbook.  More help

Biological Plausibility:

  • In general, the biological plausibility and coherence linking activation of the AhR through early life stage mortality from COX-2 induced alteration in cardiovascular development and function is strong.
  • The AhR is known to have critical roles in development of the heart and therefore dysregulation of these roles would be expected to result in altered cardiac development.
  • The prostaglandin synthesis pathway, of which COX-2 is a rate limiting step, is known to have roles in development of the heart (Delgado et al 2004; Gullestad & Aukrust 2005; Hocherl et al 2002; Huang et al 2007; Wong et al 1998; Dong et al 2010; Huang et al 2007; Teraoka et al 2008; 2014).
  • A properly functioning circulatory system is widely acknowledged to be crucial for survival of vertebrates (Kardong 2006). General dysfunction of the heart or associated vasculature is widely documented to have the potential to result in mortality through cardiac failure, regardless of the mechanism of dysfunction.

Concordance of dose-response relationships:

  • There is significant evidence showing concordance of dose-response for incidence and severity of alteration in cardiovascular development and function and subsequently mortality across at least 16 different species of fish (Buckler et al 2015; Elonen et al 1998; Huang et al 2012; Johnson et al 1998; Park et al 2014; Tillitt et al 2016; Toomey et al 2001; Walker et al 1991; Yamauchi et al 2006; Zabel et al 1995) and 8 different species of birds (Cohen-Barnhouse et al 2011; Brunstrom 1990; Brunstrom & Andersson 1988; Hoffman et al 1996; 1998; Powell et al 1998) for several PCDDs, PCDFs, planar PCBs, and PAHs. Concordance of dose-response has not been observed in amphibians studied to date because no elevated mortality or altered cardiovascular development and function was observed at any tested concentration of agonist (Jung et al 1997).
  • Less is known regarding concordance of dose-response relationships for COX-2. In Japanese medaka (Oryzias latipes), abundance of transcript of COX-2 is significantly greater than controls at concentrations of TCDD of 0.2 ppb and greater (Dong et al 2010). Likewise, incidence of cardiovascular development and heart area were both significantly different than controls at concentrations of TCDD of 0.2 ppb and greater (Dong et al 2010).

Temporal concordance among the key events and adverse effect:

  • Alterations in cardiovascular development or function is first observable in zebrafish around 48 hours post fertilization (hpf), while mortality does not begin to occur until around 86 hpf (Goldstone & Stegeman 2006).
  • AhR transcript and protein is first detectable in zebrafish around 24 hpf (Tanguay et al 1999).
  • COX-2 transcript is first detectable in zebrafish around 6 hpf (Teraoka et al 2008). Expression of COX-2 was investigated in zebrafish exposed to TCDD at 55 and 72 hpf (Teraoka et al 2014). At 55 hpf there was a trend towards up-regulation of COX-2 (~ 1.5-fold), while at 72 hpf there was a significant up-regulation of COX-2 (~ 4.5-fold) (Teraoka et al 2014).
  • Therefore, there is a general temporal concordance in this AOP.
  • However, there is some uncertainty in the early manifestations of altered cardiovascular development and up-regulation of COX-2. It is possible that the first manifestations of altered cardiovascular development result from mechanisms other than COX-2. For example, sex determining region Y-box-9b (Sox9b) is first expressed in zebrafish at around 24 hpf and has been known to cause some altered cardiovascular phenotypes (Hofsteen et al 2013; Li et al 2002). However, no studies have yet investigated temporal concordance of regulation of Sox9b by the AhR prior to 72 hpf (Hofsteen et al 2013). It is also possible that temporal concordance of early increases in COX-2 is obscured by the relatively little fold-changes observed for COX-2. Additional investigations into up-regulation of COX-2 by activation of the AhR across developmental stages is warranted.


  • There are no known AhR-mediated effects that occur at concentrations below those that cause alteration in cardiovascular development and function that result in early life stage mortality in fishes, amphibians, reptiles, or birds.
  • There are no studies in which COX-2 and altered cardiovascular development or function were co-investigated in which altered cardiovascular development or function occurred without an up-regulation in COX-2.
  • In TCDD exposure groups, some individuals do not manifest alterations in cardiovascular development or function (Dong et al 2010). TCDD exposed individuals of Japanese medaka that did not manifest alterations in cardiovascular development or function had expression of COX-2 that was not statistically different than controls, while individuals that did manifest alterations in cardiovascular development or function had increased expression of COX-2 (Dong et al 2010).
  • There is also consistency in the TCDD-induced alterations in cardiovascular phenotype between distantly related oviparous taxa, namely fish and birds (Teraoka et al 2008; Fujisawa et al 2014). Likewise, COX-2 is known to be up-regulated in both these taxa (Teraoka et al 2008; Fujisawa et al 2014). Cardiovascular development and function and COX-2 have not been investigated in amphibians or reptiles.

Uncertainties, inconsistencies, and data gaps:

  • There are several other pathways by which activation of the AhR could result in altered cardiovascular development and function in developing embryos. These include, but are not limited to, down-regulation in Sox9b, BMP-4, and genes in the cell cycle gene cluster (Hofsteen et al 2013; Jonsson et al 2007), oxidative stress (Goldstone & Stegeman 2008), and AhR cross-talk with hypoxia inducible factor 1α (HIF1α) causing reduced transcription of vascular endothelial growth factor (VEGF) (AOP 150).
  • Investigations of knockdown and null strains for Sox9b in zebrafish do not result in the complete phenotype of altered cardiovascular development recorded in embryos following exposure to planar aromatic hydrocarbons (Hofsteen et al 2013). Specifically, knockdown or knockout of Sox9b is associated with mild pericardial edema, unlooping, loss of proepicardium, and failure to form epicardium and endocardial cushions, but does not result in typical TCDD-mediated effects of a compacted ventricle or an elongated string-like atrium (Hofsteen et al 2013). Altered cardiovascular development as a result of complete knockout of Sox9b is not severe enough to cause complete cardiac failure and early life stage mortality in zebrafish (Hofsteen et al 2013). Injection of TCDD exposed embryos with Sox9b mRNA was able to prevent the Sox9b phenotype of cardiovascular development, however it did not prevent altered cardiovascular development altogether (Hofsteen et al 2013).Considering, TCDD is only able to decrease expression of Sox9b in the heart by up to about 50% and complete knockout of Sox9b expression is not lethal suggests that Sox9b is not essential to TCDD-mediated alteration in cardiovascular development and function (Hofsteen et al 2013).
  • Oxidative stress as a result of induction in CYP1A has commonly been proposed as the mechanism of altered cardiovascular development and function and CYP1A follows dose- and temporal concordance with mortality across numerous investigations in fishes and birds (Goldstone & Stegeman 2008). Early studies of CYP1A knockdown in zebrafish demonstrated protection against alteration in cardiovascular development and function induced by exposure to TCDD (Teraoka et al 2003). However, more recent investigations have observed no protection (Carney et al 2006). This inconsistency has been proposed to result from the earlier studies only recording alteration in cardiovascular development and function at early stages when adverse effects are difficult to accurately observe (Carney et al 2006). In birds, COX-2 inhibitors have no effect on expression of CYP1A but protect against TCDD induced alteration in cardiovascular development and function suggesting that CYP1A is not involved in toxicities (Fujisawa et al 2014).
  • For cross-species and cross-taxa extrapolation, there is uncertainty in whether COX-2 is up-regulated by AhR through genomic or non-genomic mechanisms. Specifically, there is no detailed analysis regarding how widespread COX-2 genes which contain DREs in the promoter region are among species and among taxa and whether non-genomic or genomic mechanisms of up-regulation in COX-2 are more ubiquitous.
  • All mechanistic investigations into mechanisms of AhR-mediated alteration in cardiovascular development and function have been conducted in zebrafish, Japanese medaka, and chicken. Therefore, no mechanistic information is available to conclude cross-species extrapolation outside of a shared phenotype of altered cardiovascular development and function. There is no information about AhR-mediated alteration in cardiovascular development or function or up-regulation of COX-2 in early fishes (Petromyzontiformes; Myxiniformes; Chondrichthyes), amphibians, or reptiles.
  • Despite these uncertainties, the strong, quantitative link between activation of the AhR and early life stage mortality means that elucidating the precise series of key events is less critical. Therefore, the evidence suggesting COX-2 as a primary mechanism might be all that is necessary, although multiple mechanisms acting together is the most likely true mechanism.

Quantitative Understanding

Some proof of concept examples to address the WoE considerations for AOPs quantitatively have recently been developed, based on the rank ordering of the relevant Bradford Hill considerations (i.e., biological plausibility, essentiality and empirical support) (Becker et al., 2017; Becker et al, 2015; Collier et al., 2016). Suggested quantitation of the various elements is expert derived, without collective consideration currently of appropriate reporting templates or formal expert engagement. Though not essential, developers may wish to assign comparative quantitative values to the extent of the supporting data based on the three critical Bradford Hill considerations for AOPs, as a basis to contribute to collective experience.Specific attention is also given to how precisely and accurately one can potentially predict an impact on KEdownstream based on some measurement of KEupstream. This is captured in the form of quantitative understanding calls for each KER. See pages 55-56 of the User Handbook for a review of quantitative understanding for KER's. More help
  • The majority of the quantitative understanding and the strongest quantitative understanding is for the indirect relationship between activation of the AhR and early life stage mortality.
  • There is a strong quantitative understanding between quantitative structure-activity relationship (QSAR) or binding affinity for the AhR and potency among PCDDs, PCDFs, and planar PCBs (Van den Berg et al 1998; 2006). Specifically, these studies have demonstrated that congeners with greater binding affinity have greater potency (Van den Berg et al 1998; 2006). This has partially contributed to the successful development of the toxic equivalency factor (TEF) methodology in risk assessment (Van den Berg et al 1998; 2006).
  • There is also a strong quantitative understanding of differences in binding affinity of the AhR among species of birds and differences in sensitivity to early life stage mortality (Karchner et al 2006; Farmahin et al 2012; 2013; Manning et al 2013). Specifically, these studies demonstrate that species of birds with AhRs with greater affinity for DLCs have greater sensitivity than species with AhRs with lesser affinity for DLCs (Karchner et al 2006). These differences in sensitivity range by more than 40-fold for TCDD (Cohen-Barnhouse et al 2011). However, a quantitative understanding between differences in binding affinity of the AhR among species and differences in sensitivity to early life stage mortality is not yet available for other taxa (Doering et al 2013).
  • There is some quantitative understanding between up-regulation of COX-2 and incidence of and severity of cardiac deformities for medakafish exposed to TCDD (Dong et al 2010). This quantitative understanding includes a strong linear relationship (R2 = 0.88) between abundance of COX-2 transcript and heart area (Dong et al 2010). However, this information is not available with regards to multiple investigations, species, taxonomic groups, or chemicals.
  • There is strong quantitative understanding between incidence of and severity of cardiovascular deformities and mortality. However, numerous different cardiovascular endpoints are investigated among studies making side-by-side comparisons difficult.

Considerations for Potential Applications of the AOP (optional)

At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale.To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page or 'Update and continue' to continue editing AOP text sections.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page. More help

There are great differences in sensitivity to agonists of the AhR among species and among taxa and  great differences in potency among agonists of the AhR. Therefore, this AOP has utility towards the mechanistic understanding of adverse effects of agonists of the AhR with regard to cross-chemical, cross-species, and cross-taxa extrapolations. This utility has led to the development of a qAOP that has demonstrated utility in guiding more objective ecological risk assessments of native species to agonists of the AhR, particularly assessments of threatened or endangered species that often cannot be investigated in laboratory toxicity testing (Doering et al 2018).


List the bibliographic references to original papers, books or other documents used to support the AOP. More help

Abnet, C.C.; Tanguay, R.L.; Heideman, W.; Peterson, R.E. 1999. Transactivation activity of human, zebrafish, and rainbow trout aryl hydrocarbon receptors expressed in COS-7 cells: Greater insight into species differences in toxic potency of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners. Toxicol. Appl. Pharmacol. 159, 41-51.

Antkiewicz, D.S.; Burns, C.G.; Carney, S.A.; Peterson, R.E.; Heideman, W. 2005. Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol. Sci. 84, 368-377.

Bak, S.M.; Lida, M.; Hirano, M.; Iwata, H.; Kim, E.Y. 2013. Potencies of red seabream AHR1- and AHR2-mediated transactivation by dioxins: implications of both AHRs in dioxin toxicity. Environ. Sci. Technol. 47 (6), 2877-2885.

Belair, C.D.; Peterson, R.E.; Heideman, W. (2001). Disruption of erythropoiesis by dioxin in the zebrafish. Dev. Dyn. 222 (4), 581-594.

Billiard, S.M.; Hahn, M.E.; Franks, D.G.; Peterson, R.E.; Bols, N.C.; Hodson, P.V. (2002). Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 133 (1), 55-68.

Brunstrom, B. (1990). Mono-ortho-chlorinated chlorobiphenyls: toxicity and induction of 7-ethoxyresorufin O-deethylase (EROD) activity in chick embryos. Arch. Toxicol. 64, 188-192.

Brunstrom, B.; Andersson, L. (1988). Toxicity and 7-ethoxyresorufin O-deethylase-inducing potency of coplanar polychlorinated biphenyls (PCBs) in chick embryos. Arch. Toxicol. 62, 263-266.

Buckler J.; Candrl, J.S.; McKee, M.J.; Papoulias, D.M.; Tillitt, D.E.; Galat, D.L. Sensitivity of shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus) early life stages to PCB-126 and 2,3,7,8-TCDD exposure. Enviro. Toxicol. Chem. 2015, 34(6), 1417-1424.

Canga, L., Paroli, L., Blanck, T. J., Silver, R. B., and Rifkind, A. B. (1993). 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases cardiac myocyte intracellular calcium and progressively impairs ventricular contractile responses to isoproterenol and to calcium in chick embryo hearts. Mol. Pharmacol.  44, 1142–1151.

Carney, S.A.; Peterson, R.E.; Heideman, W. 2004. 2,3,7,8-tetrachlorodibenzo-p-dioxin activation of aryl hydrocarbon receptors/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol. Pharmacol. 66 (2), 512-521.

Carney, S.A.; Prasch, A.L.; Heideman, W.; Peterson, R.E. 2006. Understanding dioxin developmental toxicity using the zebrafish model. Birth Defects Research. A. 76, 7-18.

Chen, G.; Bunce, N.J. (2003). Polybrominated diphenyl ethers as Ah receptor agonists and antagonists. Toxicol. Sci. 76 (2), 310-320.

Clark, B.W.; Matson, C.W.; Jung, D.; Di Giulio, R.T. 2010. AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat. Toxicol. 99, 232-240.

Cohen-Barnhouse, A.M.; Zwiernik, M.J.; Link, J.E.; Fitzgerald, S.D.; Kennedy, S.W.; Herve, J.C.; Giesy, J.P.; Wiseman, S.; Yang, Y.; Jones, P.D.; Yi, W.; Collins, B.; Newsted, J.L.; Kay, D.; Bursian, S.J. 2011. Sensitivity of Japanese quail (Coturnix japonica), common pheasant (Phasianus colchicus), and white leghorn chicken (Gallus gallus domesticus) embryos to in ovo exposure to TCDD, PeCDF, and TCDF. Toxicol. Sci. 119, 93-102.

Cook, P.M.; Robbins, J.A.; Endicott, D.D.; Lodge, K.B.; Guiney, P.D.; Walker, M.K.; Zabel, E.W.; Peterson, R.E. 2003. Effects of aryl hydrocarbon receptor-mediated early life stage toxicity on lake trout populations in Lake Ontario during the 20th century. Enviro. Sci. Technol. 37 (17), 3864-3877.

Degner, S.C.; Kemp, M.Q.; Hockings, J.K.; Romagnolo, D.F. (2007). Cyclooxygenase-2 promoter activation by the aromatic hydrocarbon receptor in breast cancer MCF-7 cells: Repressive effects of conjugated linoleic acid. Nutri. Canc. 56 (2), 248-257.

Denison, M.S.; Heath-Pagliuso, S. The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull. Environ. Contam. Toxicol. 1998, 61 (5), 557-568.

Doering, J.A.; Giesy, J.P.; Wiseman, S.; Hecker, M. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain. Environ. Sci. Pollut. Res. Int. 2013, 20(3), 1219-1224.

Doering, J.A.; Wiseman, S; Beitel, S.C.; Giesy, J.P.; Hecker, M. 2014. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds. Aquat. Toxicol. 150, 27-35.

Doering, J.A.; Wiseman, S.; Giesy, J.P.; Hecjer, M. 2018. A cross-species quantitative adverse outcome pathway for activation of the aryl hydrocarbon receptor leading to early life stage mortality in birds and fishes. Environ. Sci. Technol. 52 (13), 7524-7533.

Dong, W.; Matsumura, F.; Kullman, S.W. (2010). TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias latipes) embryos. Toxicol. Sci. 118 (1), 213-223.

Duncan, D.M.; Burgess, E.A.; Duncan, I. 1998. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 12, 1290-1303.

Elonen, G.E.; Spehar, R.L.; Holcombe, G.W.; Johnson, R.D.; Fernandez, J.D.; Erickson, R.J.; Tietge, J.E.; Cook, P.M. Comparative toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to seven freshwater fish species during early life-stage development. Enviro. Toxico. Chem. 1998, 17, 472-483.

Emmons, R.B.; Duncan, D.; Estes, P.A.; Kiefel, P.; Mosher, J.T.; Sonnenfeld, M.; Ward, M.P.; Duncan, I.; Crews, S.T. 1999. The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development. 126, 3937-3945.

Farmahin, R.; Crump, D.; O’Brien, J.M.; Jones, S.P.; Kennedy, S.W. (2016). Time-dependent transcriptomic and biochemical responses of 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are explained by AHR activation time. Biochem. Pharmacol. 115 (1), 134-143.

Farmahin, R.; Manning, G.E.; Crump, D.; Wu, D.; Mundy, L.J.; Jones, S.P.; Hahn, M.E.; Karchner, S.I.; Giesy, J.P.; Bursian, S.J.; Zwiernik, M.J.; Fredricks, T.B.; Kennedy, S.W. 2013. Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds. Toxicol. Sci. 131 (1), 139-152.

Farmahin, R.; Wu, D.; Crump, D.; Herve, J.C.; Jones, S.P.; Hahn, M.E.; Karchner, S.I.; Giesy, J.P.; Bursian, S.J.; Zwiernik, M.J.; Kennedy, S.W. 2012. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins. Enviro. Sci. Toxicol. 46 (5), 2967-2975.

Fujisaw, N.; Nakayama, S.M.M.; Ikenaka, Y.; Ishizuka, M. 2014. TCDD-induced chick cardiotoxicity is abolished by a selective cyclooxygenase-2 (COX-2) inhibitor NS398. Arch. Toxicol. 88, 1739-1748.

Giesy, J.P.; Jones, P.D.; Kannan, K.; Newstead, J.L.; Tillitt, D.E.; Williams, L.L. Effects of chronic dietary exposure to environmentally relevant concentrations to 2,3,7,8-tetrachlorodibenzo-p-dioxin on survival, growth, reproduction and biochemical responses of female rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2002, 59 (1-2), 35-53.

Goldstone, H.M.; Stegeman, J.J. 2008. Molecular mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin cardiovascular embryotoxicity. Drug. Metab. Rev. 38 (1), 261-289.

Hahn, M.E. 2002. Aryl hydrocarbon receptors: diversity and evolution. Chemico-Biol. Interact. 141, 131-160.

Hahn, M.E.; Karchner, S.I.; Evans, B.R.; Franks, D.G.; Merson, R.R.; Lapseritis, J.M. 2006. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: Insights from comparative genomics. J. Exp. Zool. A. Comp. Exp. Biol. 305, 693-706.

Hahn, M.E.; Poland, A.; Glover, E.; Stegeman, J.J. 1994. Photoaffinity labeling of the Ah receptor: phylogenetic survey of diverse vertebrate and invertebrate species. Arch. Biochem. Biophys. 310, 218-228.

Hahn, M.E.; Woodlin, B.R.; Stegeman, J.J.; Tillitt, D.E. 1998. Aryl hydrocarbon receptor function in early vertebrates: Inducibility of cytochrome P450 1A in agnathan and elasmobranch fish. Comp. Biochem. Physiol. C. 120, 67-75.

Hansson, M.C.; Hahn, M.E. 2008. Functional properties of the four Atlantic salmon (Salmo salar) aryl hydrocarbon receptor type 2 (AHR2) isoforms. Aquat. Toxicol. 86, 121-130.

Hansson, M.C.; Wittzell, H.; Persson, K.; von Schantz, T. 2004. Unprecedented genomic diversity of AhR1 and AhR2 genes in Atlantic salmon (Salmo salar L.). Aquat. Toxicol. 68 (3), 219-232.

Heid, S. E., Walker, M. K., and Swanson, H. I. (2001). Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicol. Sci.  61, 187–196.

Hengstler, J.G.; Van der Burg, B.; Steinberg, P.; Oesch, F. Interspecies differences in cancer susceptibility and toxicity. Drug. Metab. Rev. 1999, 31, 917-970.

Hill, A.J.; Bello, S.M.; Prasch, A.L.; Peterson, R.E.; Heideman, W. (2004). Water permeability and TCDD-induced edema in zebrafish early-life stages. Toxicol. Sci. 100, 486-494.

Hoffman, D.J., Rice, C.P., Kubiak, T.J., 1996. PCBs and dioxins in birds. In: Beyer, W.N.,

Heinz, G.H., Redmon-Norwood, A.W. (Eds.), Environmental Contaminants in Wildlife:

Interpreting Tissue Concentrations. CRC Press, pp. 165–207.

Hoffman, D.J., Melancon, M.J., Klein, P.N., Eisemann, J.D., Spann, J.W., 1998. Comparative

developmental toxicity of planar polychlorinated biphenyl congeners in chickens,

American kestrels, and common terns. Environ. Toxicol. Chem. 17, 747–757.

Hofsteen, P.; Plavicki, J.; Johnson, S.D.; Peterson, R.E.; Heideman, W. Sox9b is required for epicardium formation and plays a role in TCDD-induced heart malformation in zebrafish. Molec. Pharmacol. 2013, 84, 353-360.

Huang, C.C.; Chen, P.C.; Huang, C.W.; Yu, J. (2007). Aristolochic acid induces heart failure in zebrafish embryos that is mediated by inflammation. Toxicol. Sci. 100, 486-494.

Huang, L.; Wang, C.; Zhang, Y.; Li, J.; Zhong, Y.; Zhou, Y.; Chen, Y.; Zuo, Z. (2012). Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Daniorerio) embryos. Chemosphere. 87 (4), 369-375.

Ivnitski, I., Elmaoued, R., and Walker, M. K. (2001). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibition of coronary development is preceded by a decrease in myocyte proliferation and an increase in cardiac apoptosis. Teratology  64, 201–212.

Johnson, R.D.; Tietge, J.E.; Jensen, K.M.; Fernandez, J.D.; Linnum, A.L.; Lothenbach, D.B.; Holcombe, G.W.; Cook, P.M.; Christ, S.A.; Lattier, D.L.; Gordon, D.A. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to early life stage brooke trout (Salvelinus fontinalis) following parental dietary exposure. Enviro. Toxicol. Chem. 1998, 17 (12), 2408-2421.

Jonsson, M.E.; Jenny, M.J.; Woodin, B.R.; Hahn, M.E.; Stegeman, J.J. (2007). Role of AHR2 in the expression of novel cytochrome P450 1 family genes, cell cycle genes, and morphological defects in developing zebra fish exposed to 3,3’,4,4’,5-pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 100 (1), 180-193.

Jonsson, M.E.; Kubota, A.; Timme-Laragy, A.R.; Woodin, B.; Stegeman, J.J. (2012). Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol. Appl. Pharmacol. 265 (2), 166-174.

Jung, R.E.; Walker, M.K. (1997). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on development of anuran amphibians. Enviro. Toxicol. Chem. 16 (2), 230-240.

Karchner, S.I.; Franks, D.G.; Kennedy, S.W.; Hahn, M.E. 2006. The molecular basis for differential dioxin sensitivity in birds: Role of the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA. 103, 6252-6257.

Karchner, S.I.; Powell, W.H.; Hahn, M.E. 1999. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the Teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors. J. Biol. Chem. 274, 33814-33824.

Kardong, K.V. (2006). Vertebrates: comparative anatomy, function, evolution. McGraw-Hill Higher Eduction. Boston, USA.

Kleeman, J.M.; Olson, J.R.; Peterson, R.E. Species differences in 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and biotransformation in fish. Fundam. Appl. Toxicol. 1988, 10(2), 206-213.

Kopf, P.G.; Walker, M.K. (2009). Overview of developmental heart defects by dioxins, PCBs, and pesticides. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 27 94), 276-285.

Korkalainen, M.; Tuomisto, J.; Pohjanvirta, R. The AH receptor of the most dioxin-sensitive specie, guinea pig, is highly homologous to the human AH receptor. Biochem. Biophys. Res. Commun. 2001, 285, 1121-1129.

Lahvis, G.P.; Bradfield, C.A. 1998. Ahr null alleles: distinctive or different? Biochem. Pharmacol. 56, 781-787.

Lavine, J.A.; Rowatt, A.J.; Klimova, T.; Whitington, A.J.; Dengler, E.; Beck, C.; Powell, W.H. 2005. Aryl hydrocarbon receptors in the frog Xenopus laevis: two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol. Sci. 88 (1), 60-72.

Lanham, K.A.; Peterson, R.E.; Heideman, W. (2012). Sensitivity to dioxin decreases as zebrafish mature. Toxicol. Sci. 127 (2), 360-370.

Li, M.; Zhao, C.; Wang, Y.; Zhao, Z.; Meng, A. (2002). Zebrafish sox9b is an early neural crest marker. Dev. Genes Evol. 212, 203-206.

Manning G.E.; Farmahin, R.; Crump, D.; Jones, S.P.; Klein, J.; Konstantinov, A.; Potter, D.; Kennedy, S.W. 2012. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species. Toxicol. Appl. Pharm. 263, 390-401.

Murk, A.J.; Legler, J.; Denison, M.S.; Giesy, J.P.; Van De Guchte, C.; Brouwer, A. (1996). Chemical-activated luciferase gene expression (CALUX): A novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Toxicol. Sci. 33 (1), 149-160.

Nacci, D.E. Champlin, D.; Jayaraman, S. (2010). Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic killifish) to polychlorinated biphenyls (PCBs). Estuaries and Coasts. 33 (4), 853-864.

Ohi, H.; Fujita, Y.; Miyao, M.; Saguchi, K.; Murayama, N.; Higuchi, S. 2003. Molecular cloning and expression analysis of the aryl hydrocarbon receptor of Xenopus laevis. Biochem. Biophysic. Res. Comm. 307 (3), 595-599.

Okey, A.B. An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci. 2007, 98, 5-38.

Park, Y.J.; Lee, M.J.; Kim, H.R.; Chung, K.H.; Oh, S.M. Developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in artificially fertilized crucian carp (Carassius auratus) embryo. Sci. Totl. Enviro. 2014, 491-492, 271-278.

Pongratz, I.; Mason, G.G.; Poellinger, L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J. Biol. Chem. 1992, 267 (19), 13728-13734.

Powell, D.C., Aulerich, R.J., Meadows, J.C., Tillitt, D.E., Kelly, M.E., Stromborg, K.L.,

Melancon, M.J., Fitzgerald, S.D., Bursian, S.J., 1998. Effects of 3,3′,4,4′,5-

pentachlorobiphenyl and 2,3,7,8-tetrachlorodibenzo-p-dioxin injected into the

yolks of double-crested cormorant (Phalacrocorax auritus) eggs prior to incubation.

Environ. Toxicol. Chem. 17, 2035–2040.

Prasch, A.L.; Teraoka, H.; Carney, S.A.; Dong, W.; Hiraga, T.; Stegeman, J.J.; Heideman, W.; Peterson, R.E. 2003. Toxicol. Sci. Aryl hydrocarbon receptor 2 mediated 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. 76 (1), 138-150.

Scott, J.A.; Incardona, J.P.; Pelkki, K.; Shepardson, S.; Hodson, P.V. (2011). AhR2-mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquat. Toxicol. 101 (1), 165-174.

Shoots, J.; Fraccalvieri, D.; Franks, D.G.; Denison, M.S.; Hahn, M.E.; Bonati, L.; Powell, W.H. 2015. An aryl hydrocarbon receptor from the salamander Ambystoma mexicanum exhibits low sensitivity to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Enviro. Sci. Technol. 49, 6993-7001.

Spitsbergen, J.M.; Kleeman, J.M.; Peterson, R.E. 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in yellow perch (Perca flavescens). J. Toxicol. Environ. Health. 1988, 23, 359-383.

Spitsbergen, J.M.; Kleeman, J.M.; Peterson, R.E. Morphologic lesions and acute toxicity in rainbow trout (Salmo gairdneri) treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Toxicol. Environ. Health. 1988, 23, 333-358.

Spitsbergen, J.M.; Schat, K.A.; Kleeman, J.M.; Peterson, R.E. Interactions of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with immune responses of rainbow trout. Vet. Immunol. Immunopathol. 1986, 12(1-4), 263-280.

Tanguay, R.L.; Abnet, C.C.; Heideman, W. Peterson, R.E. (1999). Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor1. Biochimica et Biophysica Act 1444, 35-48.

Teraoka, H.; Dong, W.; Tsujimoto, Y.; Iwasa, H.; Endoh, D.; Ueno, N.; Stegeman, J.J.; Peterson, R.E.; Hiraga, T. (2003). Induction of cytochrome P450 1A is required for circulatory failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. Biochem. Biophys. Res. Commun. 304, 223-228.

Teraoka, H.; Kubota, A.; Kawai, Y.; Hiraga, T. (2008). Prostanoid signaling mediates circulation failure caused by TCDD in developing zebrafish. Interdis. Studies Environ. Chem. Biol. Resp. Chem. Pollut. 61-80.

Teraoka, H.; Okuno, Y.; Nijoukubo, D.; Yamakoshi, A.; Peterson, R.E.; Stegeman, J.J.; Kitazawa, T.; Hiraga, T.; Kubota, A. (2014). Involvement of COX2-thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish. Aquat. Toxicol. 154, 19-25.

Thackaberry, E.A.; Nunez, B.A.; Ivnitski-Steele, I.D. Friggins, M.; Walker, M.K. (2005). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on murine heart development: Alteration in fetal and postnatal cardiac growth, and postnatal cardiac chronotropy. Toxicol. Sci. 88 (1), 242-249.

Tillitt, D.E.; Buckler, J.A.; Nicks, D.K.; Candrl, J.S.; Claunch, R.A.; Gale, R.W.; Puglis, H.J.; Little, E.E.; Linbo, T.L.; Baker, M. Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3’,4,4’,5-pentachlorobiphenyl. 2015. Enviro. Toxicol. Chem. DOI: 10.1002/etc.3614.

Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.; Di Giulio, R.T. TCDD induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos. Aquat. Toxicol. 2001, 53, 127-138.

Uno, S.; Dalton, T.P.; Sinclair, P.R.; Gorman, N.; Wang, B.; Smith, A.G.; Miller, M.L.; Shertzer, H.G.; Nebert, D.W. (2004). Cyp1a1 (-/-) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria. Toxicol. Appl. Pharmacol. 196 (3), 410-421.

Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.C.; Brunstrom, B.; Cook, P.; Feeley, M.; Giesy, J.P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; Kubiak, T.; Larsen, J.C.; van Leeuwen, R.X.R.; Liem, A.K.D.; Nolt, C.; Peterson, R.E.; Poellinger, L.; Safe, S.; Schrenk, D.; Tillitt, D.; Tysklind, M.; Younes, M.; Waern, F.; Zacharewski, T. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PECDFs for human and wildlife. Enviro. Hlth. Persp. 1998, 106, 775-792.

Van den Berg, M.; Birnbaum, L.S.; Dension, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; Rose, M.; Safe, S.; Schrenk, D.; Tohyama, C.; Tritscher, A.; Tuomisto, J.; Tysklind, M.; Walker, N.; Peterson, R.E. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93 (2), 223-241.

Van Tiem, L.A.; Di Giulio, R.T. 2011. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 254 (3), 280-287.

Walker, M.K.; Catron, T.F. (2000). Characterization of cardiotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related chemicals during early chick embryo development. Toxicol. Appl. Pharmacol. 167 (3), 210-221.

Walker, M.K.; Spitsbergen, J.M.; Olson, J.R.; Peterson, R.E. 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) toxicity during early life stage development of lake trout (Salvelinus namaycush). Canad. J. Fisheries Aqua. Sci. 1991, 48, 875-883.

Waller, C.L.; McKinney, J.D. (1992). Comparative molecular field analysis of polyhalogenated dibenzo-p-dioixns, dibenzofurans, and biphenyls. J. Med. Chem. 35, 3660-2666.

Waller, C.; McKinney, J. (1995). Three-dimensional quantitative structure-activity relationships of dioxins and dioxin-like compounds: model validation and Ah receptor characterization. Chem. Res. Toxicol. 8, 847-858.

Walter, G.L.; Jones, P.D.; Giesy, J.P. Pathologic alterations in adult rainbow trout, Oncorhynchus mykiss, exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin. Aquat. Toxicol. 2000, 50, 287-299.

Whitlock, J.P.; Okino, S.T.; Dong, L.Q.; Ko, H.S.P.; Clarke Katzenberg, R.; Qiang, M.; Li, W. 1996. Induction of cytochrome P4501A1: a model for analyzing mammalian gene transcription. Faseb. J. 10, 809-818.

Whyte, J.J.; Jung, R.E.; Schmitt, C.J.; Tillitt, D.E. (2008). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit. Rev. Toxicol. 30 (4), 347-570.

Wirgin, I.; Roy, N.K.; Loftus, M.; Chambers, R.C.; Franks, D.G.; Hahn, M.E. 2011. Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River. Science. 331, 1322-1324.

Yamauchi, M.; Kim, E.Y.; Iwata, H.; Shima, Y.; Tanabe, S. Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing red seabream (Pagrus major) embryos: an association of morphological deformities with AHR1, AHR2 and CYP1A expressions. Aquat. Toxicol. 2006, 16, 166-179.

Zabel, E.W; Cook, P.M.; Peterson, R.E. Toxic equivalency factors of polychlorinated dibenzo-p-dioxin, dibenzofuran and biphenyl congeners based on early-life stage mortality in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 1995. 31, 315-328.