This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1650
Key Event Title
Epithelial-mesenchymal transition
Short name
Biological Context
Level of Biological Organization |
---|
Tissue |
Organ term
Organ term |
---|
organ |
Key Event Components
Process | Object | Action |
---|---|---|
epithelial to mesenchymal transition | cellular_component | occurrence |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Increases in ROS and chronic ROS leading to human treatment-resistant gastric cancer | KeyEvent | Agnes Aggy (send email) | Open for comment. Do not cite | EAGMST Under Review |
PM-induced respiratory toxicity | KeyEvent | Cataia Ives (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Homo sapiens | Homo sapiens | High | NCBI |
Life Stages
Life stage | Evidence |
---|---|
All life stages | High |
Sex Applicability
Term | Evidence |
---|---|
Unspecific | High |
Key Event Description
Epithelial-mesenchymal transition (EMT) is a phenomenon in which the cells transit from epithelial-like into mesenchymal-like phenotypes (Huan et al., 2022; Tanabe, 2017; Tanabe et al., 2015). In cancer, cells exhibiting EMT features contribute to metastasis and drug resistance.
It is known that D-2-hydroxyglurate induces EMT (Guerra et al., 2017; Jia et al., 2018; Mishra et al., 2018; Sciacovelli & Frezza, 2017). D-2-hydroxyglurate, an inhibitor of Jumonji-family histone demethylase, increased the trimethylation of histone H3 lysine 4 (H3K4) in the promoter region of the zinc finger E-box-binding homeobox 1 (ZEB1), followed by the induction of EMT (Colvin et al., 2016).
Wnt5a induces EMT and metastasis in non-small-cell lung cancer (Wang et al., 2017).
EMT is related to Wnt/beta-catenin signaling and is important for treatment-resistant cancer (Tanabe et al., 2016)
TGFbeta induces EMT (Wendt et al., 2010).
ZEB is one of the critical transcription factors for EMT regulation (Zhang et al., 2015).
SNAI1 (Snail) is an important transcription factor for cell differentiation and survival. The phosphorylation and nuclear localization of Snail1 induced by Wnt signaling pathways are critical for the regulation of EMT (Kaufhold & Bonavida, 2014).
Transcription factors SNAI1 and TWIST1 induce EMT (Hodge et al., 2018) (Mani et al., 2008)
It is suggested that Sp1, a transcription factor involved in cell growth and metastasis, is induced by cytochrome P450 1B1 (CYP1B1), and promotes EMT, which leads to cell proliferation and metastasis (Kwon et al., 2016).
How It Is Measured or Detected
- EMT can be detected by immunostaining with pro-surfactant protein-C (pro-SPC) and N-cadherin in idiopathic pulmonary fibrosis (IPF) lung in vivo (Kim et al., 2006).
- EMT can be detected by immunostaining with vimentin in lung alveola in vivo (Kim et al., 2006).
- EMT can be detected as the increased level of the transcription factors, zinc finger E-box-binding homeobox (ZEB), Twist and Snail (Huang et al., 2022).
Domain of Applicability
- Wnt5a expression leads to epithelial-mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer in Homo sapiens (Wang et al., 2017).
- WNT2 expression lead to EMT induction in Homo sapiens (Zhou et al., 2016).
- EMT is induced in cancer and involved in cancer metastasis in Homo sapiens (Suarez-Carmona, Lesage, Cataldo, & Gilles, 2017) (Du & Shim, 2016).
References
Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., . . . Ishii, H. (2016). Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer. Sci Rep, 6, 36289. doi:10.1038/srep36289
Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). doi:10.3390/molecules21070965
Fang, C. X., Ma, C. M., Jiang, L., Wang, X. M., Zhang, N., Ma, J. N., . . . Zhao, Y. D. (2018). p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. Curr Med Sci, 38(3), 473-481. doi:10.1007/s11596-018-1903-4
Guerra, F., Guaragnella, N., Arbini, A. A., Bucci, C., Giannattasio, S., & Moro, L. (2017). Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front Oncol, 7, 295. doi:10.3389/fonc.2017.00295
Hodge, D. Q., Cui, J., Gamble, M. J., & Guo, W. (2018). Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep, 8(1), 841. doi:10.1038/s41598-018-19364-4
Huan, Z., Zhang, Z., Zhou, C., Liu, L., Huang, C. (2022). Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm. 2022 May 18;3(2):e144. doi: 10.1002/mco2.144
Jia, D., Park, J. H., Jung, K. H., Levine, H., & Kaipparettu, B. A. (2018). Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells, 7(3). doi:10.3390/cells7030021
Kaufhold, S., & Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res, 33, 62. doi:10.1186/s13046-014-0062-0
Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., . . . Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. PNAS, 103(35), 13180-13185. doi:10.1073/pnas.0605669103
Kwon, Y. J., Baek, H. S., Ye, D. J., Shin, S., Kim, D., & Chun, Y. J. (2016). CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/beta-Catenin Signaling via Sp1 Upregulation. PLoS One, 11(3), e0151598. doi:10.1371/journal.pone.0151598
Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., . . . Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. doi:10.1016/j.cell.2008.03.027
Mishra, P., Tang, W., Putluri, V., Dorsey, T. H., Jin, F., Wang, F., . . . Ambs, S. (2018). ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest, 128(1), 323-340. doi:10.1172/JCI93815
Sciacovelli, M., & Frezza, C. (2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J, 284(19), 3132-3144. doi:10.1111/febs.14090
Suarez-Carmona, M., Lesage, J., Cataldo, D., & Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 11(7), 805-823. doi:10.1002/1878-0261.12095
Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., . . . Sun, Y. (2017). GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med, 6(4), 834-844. doi:10.1002/cam4.1040
Tanabe, S. (2017). Molecular markers and networks for cancer and stem cells. J Embryol Stem Cell Res, 1(1).
Tanabe, S., Kawabata, T., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2016). Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells, 8(11), 384-395. doi:10.4252/wjsc.v8.i11.384
Tanabe, S., Komatsu, M., Kazuhiko, A., Yokozaki, H., & Sasaki, H. (2015). Implications of epithelial-mesenchymal transition in gastric cancer. Translational Gastrointestinal Cancer, 4(4), 258-264. Retrieved from http://tgc.amegroups.com/article/view/6996
Wang, B., Tang, Z., Gong, H., Zhu, L., & Liu, X. (2017). Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep, 37(6). doi:10.1042/BSR20171092
Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 29(49), 6485-6498. doi:10.1038/onc.2010.377
Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481-487. doi:10.1080/15384101.2015.1006048
Zhou, Y., Huang, Y., Cao, X., Xu, J., Zhang, L., Wang, J., . . . Zheng, M. (2016). WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One, 11(8), e0160414. doi:10.1371/journal.pone.0160414